Brunel University Research Archive (BURA) >
Schools >
School of Health Sciences and Social Care >
School of Health Sciences and Social Care Research Papers >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/4994

Title: Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model
Authors: Sandi, C
Pinto, RM
Al-Mahdawi, S
Ezzatizadeh, V
Barnes, G
Jones, S
Rusche, JR
Gottesfeld, JM
Pook, MA
Keywords: Friedreich ataxia
FRDA, frataxin
Trinucleotide repeat
Transgenic mouse model
Histone deacetylase inhibitor
HDAC inhibitor
Publication Date: 2011
Publisher: Elsevier
Citation: Neurobiology of Disease, In Press
Abstract: Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.
Description: NOTICE: this is the author’s version of a work that was accepted for publication in Neurobiology of Disease. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.
Sponsorship: This work was supported by Repligen Corporation; Muscular Dystrophy Association (MDA) USA; Ataxia UK; Friedreich's Ataxia Research Alliance (FARA); GoFAR; and the Wellcome Trust [089757].
URI: http://bura.brunel.ac.uk/handle/2438/4994
DOI: http://dx.doi.org/10.1016/j.nbd.2011.02.016
ISSN: 0969-9961
Appears in Collections:School of Health Sciences and Social Care Research Papers
Biological Sciences

Files in This Item:

File Description SizeFormat
Fulltext.pdf465.47 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan