Brunel University Research Archive (BURA) >
Schools >
School of Engineering and Design >
School of Engineering and Design Theses >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6172

Title: Interface design for a remote guidance system for the blind: Using dual-screen displays
Authors: Al-Masarweh, Mohammed Hamed
Advisors: Garaj, V
Balachandran, W
Publication Date: 2011
Abstract: The mobility for the visually impaired people is one of the main challenges that researchers are still facing around the world. Although some projects have been conducted to improve the mobility of visually impaired people, further research is still needed. One of these projects is Brunel Remote Guidance System (BRGS). BRGS is aimed to assist visually impaired users in avoiding obstacles and reaching their destinations safely by providing online instructions via a remote sighted guide. This study comes as continuation of the development process of BRGS; the main aim that has been achieved of this research is the optimisation of the interface design for the system guide terminal. This helps the sighted guide to assist the VIUs to avoid obstacles safely and comfortably in the micro-navigation, as well as to keep them on the right track to reach their destination in the macro-navigation. After using the content analysis, the performance factors and their assessments method were identified in each BRGS‘ element, which concluded that there is a lack of research on the guide terminal setup and the assessment method for the sighted guide performance. Furthermore, there are no model to assist the sighted guide performance and two-screen displays used in the literature review and similar projects. A model was designed as a platform to conduct the evaluation on sighted guide performance. Based on this model, the computer-based simulation was established and tested, which made the simulation is ready for next task; the evaluation of the sighted guide performance. The conducted study determined the effects of the two-screen displays on the recognition performance of the 80 participants in the guide terminal. The performance was measured with the context of four different resolution conditions. The study was based on a simulation technique, which is consisted of two key performance elements in order to examine the sighted guide performance; the macro-navigation element and the micro-navigation element. The results show that the two-screen displays have an effect on the performance of the sighted guide. The optimum setup for the two-screen displays for the guide terminal consisted of a big digital map screen display (4CIF [704p x 576p]) and a small video image screen display (CIF [352p x 288p]), which one of the four different resolutions. This interface design has been recommended as a final setup in the guide terminal.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
URI: http://bura.brunel.ac.uk/handle/2438/6172
Appears in Collections:School of Engineering and Design Theses
Electronic and Computer Engineering

Files in This Item:

File Description SizeFormat
FulltextThesis.pdf2.13 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan