Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6290
Title: Efficient architectures and power modelling of multiresolution analysis algorithms on FPGA
Authors: Sazish, Abdul Naser
Advisors: Amira, A
Abbod, MF
Keywords: HAAR wavelet transform;HAAR wavelet transform factorisation methodologies;Architecture for block cyclic convolution;Distributed architecture for HAAR wavelet transform;Architecture for finite ridgelet transform
Issue Date: 2011
Publisher: Brunel University School of Engineering and Design PhD Theses
Abstract: In the past two decades, there has been huge amount of interest in Multiresolution Analysis Algorithms (MAAs) and their applications. Processing some of their applications such as medical imaging are computationally intensive, power hungry and requires large amount of memory which cause a high demand for efficient algorithm implementation, low power architecture and acceleration. Recently, some MAAs such as Finite Ridgelet Transform (FRIT) Haar Wavelet Transform (HWT) are became very popular and they are suitable for a number of image processing applications such as detection of line singularities and contiguous edges, edge detection (useful for compression and feature detection), medical image denoising and segmentation. Efficient hardware implementation and acceleration of these algorithms particularly when addressing large problems are becoming very chal-lenging and consume lot of power which leads to a number of issues including mobility, reliability concerns. To overcome the computation problems, Field Programmable Gate Arrays (FPGAs) are the technology of choice for accelerating computationally intensive applications due to their high performance. Addressing the power issue requires optimi- sation and awareness at all level of abstractions in the design flow. The most important achievements of the work presented in this thesis are summarised here. Two factorisation methodologies for HWT which are called HWT Factorisation Method1 and (HWTFM1) and HWT Factorasation Method2 (HWTFM2) have been explored to increase number of zeros and reduce hardware resources. In addition, two novel efficient and optimised architectures for proposed methodologies based on Distributed Arithmetic (DA) principles have been proposed. The evaluation of the architectural results have shown that the proposed architectures results have reduced the arithmetics calculation (additions/subtractions) by 33% and 25% respectively compared to direct implementa-tion of HWT and outperformed existing results in place. The proposed HWTFM2 is implemented on advanced and low power FPGA devices using Handel-C language. The FPGAs implementation results have outperformed other existing results in terms of area and maximum frequency. In addition, a novel efficient architecture for Finite Radon Trans-form (FRAT) has also been proposed. The proposed architecture is integrated with the developed HWT architecture to build an optimised architecture for FRIT. Strategies such as parallelism and pipelining have been deployed at the architectural level for efficient im-plementation on different FPGA devices. The proposed FRIT architecture performance has been evaluated and the results outperformed some other existing architecture in place. Both FRAT and FRIT architectures have been implemented on FPGAs using Handel-C language. The evaluation of both architectures have shown that the obtained results out-performed existing results in place by almost 10% in terms of frequency and area. The proposed architectures are also applied on image data (256 £ 256) and their Peak Signal to Noise Ratio (PSNR) is evaluated for quality purposes. Two architectures for cyclic convolution based on systolic array using parallelism and pipelining which can be used as the main building block for the proposed FRIT architec-ture have been proposed. The first proposed architecture is a linear systolic array with pipelining process and the second architecture is a systolic array with parallel process. The second architecture reduces the number of registers by 42% compare to first architec-ture and both architectures outperformed other existing results in place. The proposed pipelined architecture has been implemented on different FPGA devices with vector size (N) 4,8,16,32 and word-length (W=8). The implementation results have shown a signifi-cant improvement and outperformed other existing results in place. Ultimately, an in-depth evaluation of a high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called func-tional level power modelling approach have been presented. The mathematical techniques that form the basis of the proposed power modeling has been validated by a range of custom IP cores. The proposed power modelling is scalable, platform independent and compares favorably with existing approaches. A hybrid, top-down design flow paradigm integrating functional level power modelling with commercially available design tools for systematic optimisation of IP cores has also been developed. The in-depth evaluation of this tool enables us to observe the behavior of different custom IP cores in terms of power consumption and accuracy using different design methodologies and arithmetic techniques on virous FPGA platforms. Based on the results achieved, the proposed model accuracy is almost 99% true for all IP core's Dynamic Power (DP) components.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
URI: http://bura.brunel.ac.uk/handle/2438/6290
Appears in Collections:Electronic and Computer Engineering
Dept of Electronic and Computer Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf6.11 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.