Brunel University Research Archive (BURA) >
University >
The Brunel Collection >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6743

Title: On the influence of tube row number for mixed convection around micro tubes
Authors: Dai, C
Wang, Q
Li, B
3rd Micro and Nano Flows Conference (MNF2011)
Keywords: Lattice Boltzmann method
Mixed convection
Nature convection
Micro-tube bundle
Number of tube row
Publication Date: 2011
Publisher: Brunel University
Citation: 3rd Micro and Nano Flows Conference, Thessaloniki, Greece, 22-24 August 2011
Abstract: A numerical simulation was performed on the heat transfer of mixed convection for fluid flowing across a micro-tube bundle by using Lattice Boltzmann Method. Firstly, the program code was validated by using a bench mark case of natural convection around a hot single tube inside a square enclosure. The local and averaged heat transfer coefficient of each tube in the bundle with various row numbers was calculated. Numerous cases have been simulated from a weak natural convection case (forced convection) to a pure natural convection case. The results indicate that the total averaged Nusselt number outside the tubes gradually decreases and becomes almost a constant with tube row number at low Reynolds number, which is different from the case of conventional scaled tube. The averaged Nusselt numbers and temperature fields for various situations were compared. The other influencing factors except of the tube row number on the heat transfer behavior of a tube bundle were also summarized and discussed.
Description: This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.
Sponsorship: Tianjin Science and Technology Committee Key Project fund, under Grant No. 08JCZDC20300 and NSF of China under grant No. 40972160
URI: http://bura.brunel.ac.uk/handle/2438/6743
ISBN: 978-1-902316-98-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:

File Description SizeFormat
MNF2011.pdf1.46 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan