Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6835
Title: Severity parameter and global importance factor of non-newtonian models in 3D reconstructed human left coronary artery
Authors: Soulis, JV
Seralidou, KV
Chatzizisis, YS
Giannoglou, GD
3rd Micro and Nano Flows Conference (MNF2011)
Keywords: Non-Newtonian blood flow;Importance factor;Severity parameter;Coronary artery
Issue Date: 2011
Publisher: Brunel University
Citation: 3rd Micro and Nano Flows Conference, Thessaloniki, Greece, 22-24 August 2011
Abstract: The capabilities and limitations of various molecular viscosity models, when testing Left Coronary Artery (LCA) tree, were analyzed via: molecular viscosity, local and global non-Newtonian importance factors, Wall Shear Stress (WSS) and Wall Shear Stress Gradient (WSSG). Seven non-Newtonian molecular viscosity models, plus the Newtonian one, were compared. Dense grid of 620000 nodes located, mostly, at near to low WSS flow regions (endothelium regions) is needed for current LCA application. The WSS distribution yields a consistent LCA pattern for nearly all non-Newtonian models. High molecular viscosity, low WSS low WSSG values appear at proximal LCA regions at the outer walls of the major bifurcation. The global importance factor for the non-Newtonian power law model yields 76.7% (non-Newtonian flow), while for the Generalized power law model this value is 6.1% (Newtonian flow). The capabilities of the applied non-Newtonian law models appear at low strain rates. The Newtonian blood flow treatment is considered to be a good approximation at mid-and high-strain rates. In general, the non-Newtonian power law and the Generalized power law blood viscosity models are considered to approximate the molecular viscosity and WSS calculations in a more satisfactory way.
Description: This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.
URI: http://bura.brunel.ac.uk/handle/2438/6835
ISBN: 978-1-902316-98-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2011.pdf1.1 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.