Brunel University Research Archive (BURA) >
University >
The Brunel Collection >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6864

Title: Mechanics of blood flow in capillaries
Authors: Secomb, TW
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Blood flow
Capillary
Microcirculation
Red blood cell
Publication Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: Blood is a concentrated suspension of red blood cells (RBCs). Motion and deformation of RBCs can be analyzed based on knowledge of their mechanical characteristics. Models for single-file motion of RBCs in capillaries yield predictions of apparent viscosity in good agreement with experimental results for diameters up to about 8 μm. In living microvessels, flow resistance is also strongly influenced by the presence of a ~ 1-micron layer of macromolecules bound to the inner lining of vessel walls, the endothelial surface layer. Two-dimensional simulations, in which each RBC is represented as a set of interconnected viscoelastic elements, predict that off-center RBCs take asymmetric shapes and drift toward the center-line. Predicted trajectories agree closely with observations in microvessels of the rat mesentery. Realistic simulation of multiple interacting RBCs in microvessels remains as a major challenge for future work.
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
Sponsorship: This work was supported by NIH Grant HL034555.
URI: http://bura.brunel.ac.uk/handle/2438/6864
ISBN: 978-1-902316-72-7
978-1-902316-73-4
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:

File Description SizeFormat
MNF2009.pdf404.74 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan