Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6899
Title: Microstructure devices for water evaporation
Authors: Anurjew, E
Hansjosten, E
Maikowske, S
Schygulla, U
Brandner, JJ
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Evaporation;Microstructures;Visualization;Superheating
Issue Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment, providing relatively limited performance, or by other systems like falling-film evaporators. Due to the advantages of microstructure devices especially in chemical process engineering the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication different microstructure devices used for evaporation and generation of steam will be described. Starting with simple liquid-heated devices, different types of electrically powered devices containing micro channels as well as non-channel microstructures will be shown. While evaporation of liquids in crossflow and counterflow or co-current flow micro channel devices is possible, it is, in many cases, not possible to obtain superheated steam due to certain boundary conditions. Thus, a new design was proposed to obtain complete evaporation and superheating of the generated steam.
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
URI: http://bura.brunel.ac.uk/handle/2438/6899
ISSN: 978-1-902316-72-7
978-1-902316-73-4
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2009.pdf572.14 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.