Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6903
Title: Rotating magnetic field actuation of a multicilia configuration
Authors: Isvoranu, D
Ioan, D
Parvu, P
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Artificial cilia;Micro flow;Magnetic actuation;Integral nonlinear equations
Issue Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: The current paper continues the analysis of a completely novel method of fluid manipulation technology in micro-fluidics systems, inspired by nature, namely by the mechanisms found in ciliates. More information on this subject can be found at http://www.hitech-projects.com/euprojects/artic/. In order to simulate the drag forces acting on an array of artificial cilia, we have developed a computer code that is based on fundamental solutions of Stokes flow in a semi-infinite domain. The actuation mechanism consists of a bi-directional rotating excitation magnetic field. The magnetization induced by the magnetic field was calculated in a separate routine based on the Integral Nonlinear Equations Approach with 1D discretization of wire (cilium). Time averaged x-coordinate mass flow rates are computed for several cilium configurations resulting. The outcome and originality of this paper consist on assessing magnetic actuation as a practical tool for obtaining a consistent one-directional fluid flow.
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
URI: http://bura.brunel.ac.uk/handle/2438/6903
ISBN: 978-1-902316-72-7
978-1-902316-73-4
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2009.pdf283.75 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.