Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6907
Title: The air-liquid flow in a microfluidic airway tree
Authors: Song, Y
Baudoin, M
Manneville, P
Baroud, CN
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Two-phase flow;Airway tree;Liquid plugs
Issue Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: Microfluidic techniques are employed to investigate air-liquid flows in the pulmonary airway tree. A network of microchannels with five generations is made and used as a simplified model of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by air flow to divide at every bifurcation before reaching the exits. The resistance associated with the presence of one plug in a given generation is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, we have good predictions of the flow of two successive plugs in the network. For two-plug flows under the same driving pressure, the total flow rate depends not only on the lengths of the plugs but also the initial distance between the two. Strong long range interactions are found between daughter plugs, especially when they are flowing through the bifurcations. We also observe different flow patterns under different pushing conditions. Under a constant pressure forcing, the flow develops symmetrically while a constant flow rate push achieves an asymmetric flow.
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
URI: http://bura.brunel.ac.uk/handle/2438/6907
ISBN: 978-1-902316-72-7
978-1-902316-73-4
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2009.pdf1.27 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.