Brunel University Research Archive (BURA) >
University >
The Brunel Collection >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6942

Title: Multiscale simulation strategies and mesoscale modelling of gas and liquid flows
Authors: Kalweit, M
Drikakis, D
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Hybrid molecular-continuum methods
Mesoscale
Nanoscale
Microscale
Publication Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: This paper presents a review of multiscale simulation strategies for the modelling of micro- and nanoscale flows. These have been developed in the last two decades in an attempt to bridge the application gap between molecular and continuum simulation methods preventing the simulation of many micro- and nanofluidic devices. The paper is focused on hybrid molecular-continuum methods and reviews different coupling strategies, including geometrical decomposition in conjunction with state- and flux coupling, pointwise coupling, the heterogeneous multiscale method and the equation free approach. The different applications of these methods are briefly discussed.
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
URI: http://bura.brunel.ac.uk/handle/2438/6942
ISBN: 978-1-902316-72-7
978-1-902316-73-4
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:

File Description SizeFormat
MNF2009.pdf88.15 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.