Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/9393
Title: Continuous Flow vs. Static Chamber μPCR Devices on Flexible Polymeric Substrates
Authors: Papadopoulos, VE
Kefala, IK
Kokkoris, G
Tserepi, A
4th Micro and Nano Flows Conference (MNF2014)
Keywords: Microflow;Heat transfer;PCR;Microfluidics;DNA Amplification;Continuous flow;Static chamber;μTAS;LoC;Flexible substrates
Issue Date: 2014
Publisher: Brunel University London
Citation: 4th Micro and Nano Flows Conference, University College London, UK, 7-10 September 2014, Editors CS König, TG Karayiannis and S. Balabani
Series/Report no.: ID 153
Abstract: Two types of μPCR devices, a continuous flow and a static chamber device, fabricated on flexible polymeric substrates are compared in the current computational study. Laminar flow, heat transfer in both solid and fluid, mass conservation of species, and reaction kinetics of PCR are coupled using COMSOL. The comparison is performed under same conditions; same material stack (based on flexible polymeric films with integrated microheaters), same species initial concentrations, amplification of the same volume of fluid sample, and implementation of the same PCR protocol. Performance is quantified in terms of DNA amplification, energy consumption, and total operating time. The calculations show that the efficiency of DNA amplification is higher in the continuous flow device. However, the continuous flow device requires (~6 times) greater energy consumption which is justified by the smaller thermal mass of the static chamber device. As regards the speed, the total time required for the static chamber μPCR is comparable to the time for the continuous flow μPCR.
Description: This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.
URI: http://bura.brunel.ac.uk/handle/2438/9393
ISBN: 978-1-908549-16-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection



Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.