Brunel University Research Archive (BURA) >
Schools >
School of Engineering and Design >
School of Engineering and Design Research papers >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/2415

Title: Active noise control for high frequencies
Authors: Kaymak, E
Atherton, MA
Rotter, KRG
Millar, B
Publication Date: 2006
Publisher: Vienna University of Technology
Citation: 13th International Congress on Sound & Vibration, Vienna, Austria, 2-6 July, 2006, pp275-281.
Abstract: There are many applications that can benefit from Active Noise Control (ANC) such as in aircraft cabins and air conditioning ducts, i.e. in situations where technology interferes with human hearing in a harmful way or disrupts communication. Headsets with analogue ANC circuits have been used in the armed forces for attenuating frequencies below 1 kHz, which when combined with passive filtering offers protection across the whole frequency range of human hearing. A dental surgery is also a noisy environment; in which dental drill noise is commonly off-putting for many patients and is believed to harm the dentist’s hearing over a long period of time. However, dealing with dental drill noise is a different proposition from the applications mentioned above as the frequency range of the peak amplitudes goes from approximately 1.5 kHz to 12 kHz, whereas conventional ANC applications consider a maximum of 1.5 kHz. This paper will review the application of ANC at low frequencies and justify an approach for dealing with dental noise using digital technologies at higher frequencies. The limits of current ANC technologies will be highlighted and the means of improving performance for this dental application will be explored. In particular, technicalities of implementing filtering algorithms on a Digital Signal Processor will be addressed.
URI: http://bura.brunel.ac.uk/handle/2438/2415
Appears in Collections:School of Engineering and Design Research papers
Mechanical and Aerospace Engineering

Files in This Item:

File Description SizeFormat
12_ICSV13_2006.pdf201.92 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan