Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/3178
Title: Flow boiling in a 1.1mm tube with R134a: Experimental results and comparison with model
Authors: Shiferaw, D
Karayiannis, TG
Kenning, DBR
Keywords: Flow boiling;Heat transfer;Two phase flow;small-micro tube
Issue Date: 2007
Publisher: Elsvier
Citation: International Journal of Thermal Sciences. 48(2): 331-341
Abstract: A detailed comparison of the three-zone evaporation model, proposed by Thome et al. (2004), with experimental heat transfer results of two stainless steel tubes of internal diameter 4.26 mm and 2.01 mm using R134a fluid was presented by Shiferaw et al. (2006). In the current paper the comparison is extended to flow boiling in a 1.1 mm tube using R134a as the working fluid. Other parameters were varied in the range: mass flux 100-600 kg/m2.s; heat flux 16-150 kW/m2 and pressure 6-12 bar. The experimental results demonstrate that the heat transfer coefficient increases with heat flux and system pressure, but does not change with vapour quality when the quality is less than about 50% for low heat and mass flux values. The effect of mass flux is observed to be insignificant. For vapour quality values greater than 50% and at high heat flux values, the heat transfer coefficient does not depend on heat flux and decreases with vapour quality. This could be caused by partial dryout. The three-zone evaporation model predicts the experimental results fairly well, especially at relatively low pressure. However, the partial dryout region is highly over-predicted by the model. The sensitivity of the performance of the model to the three optimized parameters (confined bubble frequency, initial film thickness and end film thickness) and some preliminary investigation relating the critical film thickness for dryout to measured tube roughness are also discussed.
URI: http://bura.brunel.ac.uk/handle/2438/3178
Appears in Collections:Mechanical and Aerospace Engineering
Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf352.25 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.