Brunel University Research Archive (BURA) >
Schools >
School of Information Systems, Computing and Mathematics >
School of Information Systems, Computing and Mathematics Research Papers >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/3562

Title: Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem
Authors: Consoli, S
Darby-Dowman, K
Mladenović, N
Moreno-Pérez, JA
Keywords: Metaheuristics
Combinatorial optimisation
Minimum labelling spanning tree
Variable Neighbourhood Search (VNS)
Greedy Randomized Adaptive Search Procedure (GRASP)
Publication Date: 2009
Publisher: Elsevier
Citation: European Journal of Operational Research. 196(2): 440-449
Abstract: This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics.
URI: http://www.elsevier.com/wps/find/ journaldescription.cws_home/505543/description#description
http://bura.brunel.ac.uk/handle/2438/3562
DOI: http://dx.doi.org/10.1016/j.ejor.2008.03.014
Appears in Collections:Mathematics
Information Systems and Computing
School of Information Systems, Computing and Mathematics Research Papers

Files in This Item:

File Description SizeFormat
Fulltext.pdf272.61 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.

 


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan