Brunel University Research Archive (BURA) >
College of Engineering, Design and Physical Sciences >
Dept of Mathematics >
Dept of Mathematics Theses >

Please use this identifier to cite or link to this item:

Title: Design and architecture of a stochastic programming modelling system
Authors: Valente, Christian
Advisors: Mitra, G
Lucas, CA
Keywords: Scenario generation
Decision evaluation
Publication Date: 2011
Publisher: Brunel University, School of Information Systems, Computing and Mathematics
Abstract: Decision making under uncertainty is an important yet challenging task; a number of alternative paradigms which address this problem have been proposed. Stochastic Programming (SP) and Robust Optimization (RO) are two such modelling ap-proaches, which we consider; these are natural extensions of Mathematical Pro-gramming modelling. The process that goes from the conceptualization of an SP model to its solution and the use of the optimization results is complex in respect to its deterministic counterpart. Many factors contribute to this complexity: (i) the representation of the random behaviour of the model parameters, (ii) the interfac-ing of the decision model with the model of randomness, (iii) the difficulty in solving (very) large model instances, (iv) the requirements for result analysis and perfor-mance evaluation through simulation techniques. An overview of the software tools which support stochastic programming modelling is given, and a conceptual struc-ture and the architecture of such tools are presented. This conceptualization is pre-sented as various interacting modules, namely (i) scenario generators, (ii) model generators, (iii) solvers and (iv) performance evaluation. Reflecting this research, we have redesigned and extended an established modelling system to support modelling under uncertainty. The collective system which integrates these other-wise disparate set of model formulations within a common framework is innovative and makes the resulting system a powerful modelling tool. The introduction of sce-nario generation in the ex-ante decision model and the integration with simulation and evaluation for the purpose of ex-post analysis by the use of workflows is novel and makes a contribution to knowledge.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
Appears in Collections:Mathematical Science
Dept of Mathematics Theses

Files in This Item:

File Description SizeFormat
FulltextThesis.pdf3.17 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.


Library (c) Brunel University.    Powered By: DSpace
Send us your
Feedback. Last Updated: September 14, 2010.
Managed by:
Hassan Bhuiyan