Brunel University Research Archive (BURA) >
University >
The Brunel Collection >

Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/6922

Title: Effects of aggregation on the blood flow velocity field measured by a μPIV based technique
Authors: Kaliviotis, E
Dusting, J
Balabani, S
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Micro-scale blood flow
RBC network formation
Aggregates
Publication Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: The flow of red blood cells is investigated by means of a micro-PIV based technique at physiological hematocrit levels and in the presence of aggregation. The technique developed differs from typical micro-PIV as the RBCs are used as tracer particles and illumination is provided by a simple halogen light source. Changes in the microstructure of blood caused by aggregation were observed to affect the RBC flow characteristics in a narrow-gap plate-plate geometry. At low shear rates, high aggregation caused the RBC motion to become essentially two-dimensional and network formation lead to the flow deviating from the expected radial profile. The accuracy of the micro-PIV technique was shown to be dependent on aggregation, illustrating the need to take aggregation into account in future RBC flow studies.
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
Sponsorship: This work was supported in part by the EPSRC Life Sciences Interface program (EP/F007736/1) and by the Leverhulme Trust(F/07 040/X).
URI: http://bura.brunel.ac.uk/handle/2438/6922
ISBN: 978-1-902316-72-7
978-1-902316-73-4
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:

File Description SizeFormat
MNF2009.pdf322.62 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.