Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/21315
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSadrawi, M-
dc.contributor.authorLin, Y-T-
dc.contributor.authorLin, C-H-
dc.contributor.authorMathunjwa, B-
dc.contributor.authorFan, S-Z-
dc.contributor.authorAbbod, MF-
dc.contributor.authorShieh, J-S-
dc.date.accessioned2020-07-30T10:43:25Z-
dc.date.available2020-07-09-
dc.date.available2020-07-30T10:43:25Z-
dc.date.issued2020-07-09-
dc.identifier3829-
dc.identifier3829-
dc.identifier.citationSadrawi, M.; Lin, Y.-T.; Lin, C.-H.; Mathunjwa, B.; Fan, S.-Z.; Abbod, M.F.; Shieh, J.-S. Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography. Sensors 2020, 20, 3829.en_US
dc.identifier.issn1424-8220-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/21315-
dc.description.abstractHypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal.en_US
dc.format.extent1 - 18-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.subjectPhotoplethysmographyen_US
dc.subjectContinuous arterial blood pressureen_US
dc.subjectSystolic blood pressureen_US
dc.subjectDiastolic blood pressureen_US
dc.subjectDeep convolutional autoencoderen_US
dc.subjectGenetic algorithmen_US
dc.titleGenetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmographyen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.3390/s20143829-
dc.relation.isPartOfSensors-
pubs.issue14-
pubs.publication-statusPublished online-
pubs.volume20-
dc.identifier.eissn1424-8220-
Appears in Collections:Dept of Electronic and Computer Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf9.41 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.