Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29906
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFiducia, T-
dc.contributor.authorHowkins, A-
dc.contributor.authorAbbas, A-
dc.contributor.authorMendis, B-
dc.contributor.authorMunshi, A-
dc.contributor.authorBarth, K-
dc.contributor.authorSampath, W-
dc.contributor.authorWalls, J-
dc.date.accessioned2024-10-08T14:41:16Z-
dc.date.available2022-02-08-
dc.date.available2024-10-08T14:41:16Z-
dc.date.issued2022-02-08-
dc.identifierORCiD: Ashley Howkins https://orcid.org/0000-0001-9435-523X-
dc.identifier111595-
dc.identifier.citationFiducia, T. et al. (2022) 'Selenium passivates grain boundaries in alloyed CdTe solar cells', Solar Energy Materials and Solar Cells, 238, 111595, pp. 1 - 7. doi: 10.1016/j.solmat.2022.111595.en_US
dc.identifier.issn0927-0248-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29906-
dc.descriptionSupplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S0927024822000198?via%3Dihub#appsec1 .en_US
dc.description.abstractCadmium telluride (CdTe) solar cells have achieved efficiencies of over 22%, despite having absorber layer grain sizes less than 10 μm and hence a very high density of grain boundaries. Recent research has shown that this is possible because of partial passivation of grain boundaries during the widely used cadmium chloride treatment, and passivation of grain interior defects by selenium alloying of the CdTe. Here, state-of-the art TEM-based cathodoluminescence imaging is used to show that, in addition to grain interiors, selenium also passivates grain boundaries in alloyed Cd(Sex,Te1-x) material (CST). Specifically, we find that recombination at CST grain boundaries is up to an order of magnitude lower than at CdTe grain boundaries. This further explains the superior performance of selenium graded CdTe devices and provides potential new routes for further efficiency improvement and solar electricity cost reduction.en_US
dc.description.sponsorshipThe authors at Loughborough University are grateful to the EPSRC CDT in New and Sustainable Photovoltaics for providing T.F. with a studentship, RCUK for providing funding through the EPSRC SUPERGEN SuperSolar Hub (EP/J017361/1), and the Loughborough Materials Characterisation Centre for access to the Helios PFIB, funded by the EPSRC grant EP/P030599/1. The authors at Colorado State University acknowledge support from NSF AIR, NSF I/UCRC and DOE SIPS programmes. The work at Colorado State University was supported by NSF award 1540007, NSF PFI:AIR-RA programme 1538733 and DOE SIPS award DE-EE0008177.en_US
dc.format.extent1 - 7-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsAttribution -NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectcadmium tellurideen_US
dc.subjectgrain boundariesen_US
dc.subjectseleniumen_US
dc.subjectTEMen_US
dc.subjectcathodoluminescenceen_US
dc.titleSelenium passivates grain boundaries in alloyed CdTe solar cellsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.solmat.2022.111595-
dc.relation.isPartOfSolar Energy Materials and Solar Cells-
pubs.publication-statusPublished-
pubs.volume238-
dc.identifier.eissn1879-3398-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dc.rights.holderElsevier B.V.-
Appears in Collections:The Experimental Techniques Centre

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2022 Elsevier B.V. All rights reserved.. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).1.42 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons