Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/30783
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Quintanilla, P | - |
dc.contributor.author | Fernández, F | - |
dc.contributor.author | Mancilla, C | - |
dc.contributor.author | Rojas, M | - |
dc.contributor.author | Navia, D | - |
dc.date.accessioned | 2025-02-21T12:03:16Z | - |
dc.date.available | 2025-02-21T12:03:16Z | - |
dc.date.issued | 2024-11-09 | - |
dc.identifier | ORCiD: Paulina Quintanilla https://orcid.org/0000-0002-7717-0556 | - |
dc.identifier | ORCiD: Francisco Fernández https://orcid.org/0009-0001-4847-3259 | - |
dc.identifier | ORCiD: Cristóbal Mancilla https://orcid.org/0009-0007-6627-2278 | - |
dc.identifier | ORCiD: Matías Rojas https://orcid.org/0009-0004-7919-6567 | - |
dc.identifier | ORCiD: Daniel Navia https://orcid.org/0000-0003-3541-3692 | - |
dc.identifier | 109076 | - |
dc.identifier.citation | Quintanilla, P. et al. (2024) 'Digital twin with automatic disturbance detection for an expert-controlled SAG mill', Minerals Engineering, 220, 109076, pp. 1 - 6. doi: 10.1016/j.mineng.2024.109076. | en_US |
dc.identifier.issn | 0892-6875 | - |
dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/30783 | - |
dc.description.abstract | This study presents the development and validation of a digital twin for a semi-autogenous grinding (SAG) mill controlled by an expert system. The digital twin integrates three key components of the closed-loop operation: (1) fuzzy logic for expert control, (2) a state-space model for regulatory control, and (3) a recurrent neural network to simulate the SAG mill process. The digital twin is combined with a statistical framework for automatically detecting process disturbances (or critical operations), which triggers model retraining only when deviations from expected behavior are identified, ensuring continuous updates with new data to enhance the SAG supervision. The model was trained with 68 h of operational industrial data and validated with an additional 8 h, allowing it to predict mill behavior within a 2.5-min horizon at 30-s intervals with errors smaller than 5%. | en_US |
dc.format.extent | 1 - 6 | - |
dc.language | en | - |
dc.language.iso | en_US | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | digital twin | en_US |
dc.subject | expert control system | en_US |
dc.subject | optimization | en_US |
dc.subject | SAG mill | en_US |
dc.title | Digital twin with automatic disturbance detection for an expert-controlled SAG mill | en_US |
dc.type | Article | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.mineng.2024.109076 | - |
dc.relation.isPartOf | Minerals Engineering | - |
pubs.publication-status | Published | - |
pubs.volume | 220 | - |
dc.identifier.eissn | 1872-9444 | - |
dc.rights.license | https://creativecommons.org/licenses/by-nc-nd/4.0 | - |
dcterms.dateAccepted | 2024-10-24 | - |
dc.rights.holder | The Author(s) | - |
Appears in Collections: | Dept of Chemical Engineering Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Embargoed until 9 November 2025. Copyright © 2024 The Author(s). This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ | 1.2 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License