Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31131
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, P-
dc.contributor.authorLai, Q-
dc.contributor.authorLi, H-
dc.contributor.authorZhao, C-
dc.contributor.authorWang, Q-
dc.contributor.authorMeng, H-
dc.date.accessioned2025-05-03T18:02:27Z-
dc.date.available2025-05-03T18:02:27Z-
dc.date.issued2025-04-16-
dc.identifierORCiD: Hanging Meng https://orcid.org/0000-0002-8836-1382-
dc.identifier.citationLiu, P. et al. (2025) 'Self-Supervised Hyperbolic Spectro-Temporal Graph Convolution Network for Early 3D Behavior Prediction', IEEE Transactions on Cognitive and Developmental Systems, 17 (6), pp. 1411 - 1425. doi: 10.1109/tcds.2025.3561422.en_US
dc.identifier.issn2379-8920-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31131-
dc.description.abstract3D human behavior is a highly nonlinear spatiotemporal interaction process. Therefore, early behavior prediction is a challenging task, especially prediction with low observation rates in unsupervised mode. To this end, we propose a novel self-supervised early 3D behavior prediction frame-work that learns graph structures on hyperbolic manifold. Firstly, we employ the sequence construction of multi-dynamic key information to enlarge the key details of spatio-temporal behavior sequences, addressing the high redundancy between frames of spatio-temporal interaction. Secondly, for capturing dependencies among long-distance joints, we explore a unique graph Laplacian on hyperbolic manifold to perceive the subtle local difference within frames. Finally, we leverage the learned spatio-temporal features under different observation rates for progressive contrast, forming self-supervised signals. This facilitates the extraction of more discriminative global and local spatio-temporal information from early behavior sequences in unsupervised mode. Extensive experiments on three behavior datasets have demonstrated the superiority of our approach at low to medium observation rates.en_US
dc.format.extent1411 - 1425-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectself-supervised learningen_US
dc.subjectearly 3D behavior predictionen_US
dc.subjecthyperbolic manifolden_US
dc.subjectspatio-temporal interactionen_US
dc.titleSelf-Supervised Hyperbolic Spectro-Temporal Graph Convolution Network for Early 3D Behavior Predictionen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1109/tcds.2025.3561422-
dc.relation.isPartOfIEEE Transactions on Cognitive and Developmental Systems-
pubs.issue6-
pubs.publication-statusPublished-
pubs.volume17-
dc.identifier.eissn2379-8939-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf“For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising.”2.19 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons