Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31367
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNandi, AK-
dc.contributor.authorZhang, R-
dc.contributor.authorZhao, T-
dc.contributor.authorLei, T-
dc.date.accessioned2025-05-31T19:45:30Z-
dc.date.available2025-05-31T19:45:30Z-
dc.date.issued2025-02-26-
dc.identifierORCiD: Asoke K. Nandi https://orcid.org/0000-0001-6248-2875-
dc.identifierORCiD: Tao Zhao https://orcid.org/0000-0003-2828-6314-
dc.identifier.citationNandi, A.K. et al. (2025) 'Machine learning and Big Data in deep underground engineering', Deep Underground Science and Engineering, 4 (1), pp. 1 - 2. doi: 10.1002/dug2.70004.en_US
dc.identifier.issn2097-0668-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31367-
dc.description.abstractThis special issue of Deep Underground Science and Engineering (DUSE) showcases pioneering research on the transformative role of machine learning (ML) and Big Data in deep underground engineering. Edited by guest editors Prof. Asoke Nandi (Brunel University of London, UK), Prof. Ru Zhang (Sichuan University, China), Prof. Tao Zhao (Chinese Academy of Sciences, China), and Prof. Tao Lei (Shaanxi University of Science and Technology, China), this issue highlights the innovative applications of ML technique in reshaping structural safety, tunneling operations, and geotechnical investigations.en_US
dc.format.extent1 - 2-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherWiley on behalf of China University of Mining and Technology-
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titleMachine learning and Big Data in deep underground engineeringen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-02-14-
dc.identifier.doihttps://doi.org/10.1002/dug2.70004-
dc.relation.isPartOfDeep Underground Science and Engineering-
pubs.issue1-
pubs.publication-statusPublished-
pubs.volume4-
dc.identifier.eissn2770-1328-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-02-14-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Author(s). Deep Underground Science and Engineering published by John Wiley & Sons Australia, Ltd on behalf of China University of Mining and Technology. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.233.98 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons