Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/31367
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nandi, AK | - |
dc.contributor.author | Zhang, R | - |
dc.contributor.author | Zhao, T | - |
dc.contributor.author | Lei, T | - |
dc.date.accessioned | 2025-05-31T19:45:30Z | - |
dc.date.available | 2025-05-31T19:45:30Z | - |
dc.date.issued | 2025-02-26 | - |
dc.identifier | ORCiD: Asoke K. Nandi https://orcid.org/0000-0001-6248-2875 | - |
dc.identifier | ORCiD: Tao Zhao https://orcid.org/0000-0003-2828-6314 | - |
dc.identifier.citation | Nandi, A.K. et al. (2025) 'Machine learning and Big Data in deep underground engineering', Deep Underground Science and Engineering, 4 (1), pp. 1 - 2. doi: 10.1002/dug2.70004. | en_US |
dc.identifier.issn | 2097-0668 | - |
dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/31367 | - |
dc.description.abstract | This special issue of Deep Underground Science and Engineering (DUSE) showcases pioneering research on the transformative role of machine learning (ML) and Big Data in deep underground engineering. Edited by guest editors Prof. Asoke Nandi (Brunel University of London, UK), Prof. Ru Zhang (Sichuan University, China), Prof. Tao Zhao (Chinese Academy of Sciences, China), and Prof. Tao Lei (Shaanxi University of Science and Technology, China), this issue highlights the innovative applications of ML technique in reshaping structural safety, tunneling operations, and geotechnical investigations. | en_US |
dc.format.extent | 1 - 2 | - |
dc.format.medium | Print-Electronic | - |
dc.language | English | - |
dc.language.iso | en_US | en_US |
dc.publisher | Wiley on behalf of China University of Mining and Technology | - |
dc.rights | Creative Commons Attribution 4.0 International | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.title | Machine learning and Big Data in deep underground engineering | en_US |
dc.type | Article | en_US |
dc.date.dateAccepted | 2025-02-14 | - |
dc.identifier.doi | https://doi.org/10.1002/dug2.70004 | - |
dc.relation.isPartOf | Deep Underground Science and Engineering | - |
pubs.issue | 1 | - |
pubs.publication-status | Published | - |
pubs.volume | 4 | - |
dc.identifier.eissn | 2770-1328 | - |
dc.rights.license | https://creativecommons.org/licenses/by/4.0/legalcode.en | - |
dcterms.dateAccepted | 2025-02-14 | - |
dc.rights.holder | The Author(s) | - |
Appears in Collections: | Dept of Electronic and Electrical Engineering Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Copyright © 2025 The Author(s). Deep Underground Science and Engineering published by John Wiley & Sons Australia, Ltd on behalf of China University of Mining and Technology. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | 233.98 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License