Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31681
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, K-
dc.contributor.authorLiu, M-
dc.contributor.authorYu, Z-
dc.contributor.authorKong, F-
dc.contributor.authorTian, M-
dc.date.accessioned2025-08-04T14:04:24Z-
dc.date.available2025-08-04T14:04:24Z-
dc.date.issued2025-07-29-
dc.identifierArticle No.: qlaf040-
dc.identifierORCiD: Keming Yu https://orcid.org/0000-0001-6341-8402-
dc.identifierORCiD: Mao-zai Tian https://orcid.org/0009-0001-9180-5554-
dc.identifier.citationLiu, M. et al. (2025). ‘Spatiotemporal dynamic quantile regression models with applications to particulate matter concentration data’, Journal of the Royal Statistical Society Series C: Applied Statistics. Vol. 0 (ahead of print), pp. 1 - 44. doi:10.1093/jrsssc/qlaf040.en_US
dc.identifier.issn0035-9254-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/31681-
dc.description● Data availability - The Agrimonia dataset used in the empirical application can be accessed from the Zenodo website at https://zenodo.org/. The PM₂.₅ concentration data for the northeastern United States, as referenced in Appendix C [𝘩𝘵𝘵𝘱𝘴://𝘢𝘤𝘢𝘥𝘦𝘮𝘪𝘤.𝘰𝘶𝘱.𝘤𝘰𝘮/𝘫𝘳𝘴𝘴𝘴𝘤/𝘢𝘥𝘷𝘢𝘯𝘤𝘦-𝘢𝘳𝘵𝘪𝘤𝘭𝘦/𝘥𝘰𝘪/10.1093/𝘫𝘳𝘴𝘴𝘴𝘤/𝘲𝘭𝘢𝘧040/8217388?𝘴𝘦𝘢𝘳𝘤𝘩𝘳𝘦𝘴𝘶𝘭𝘵=1#𝘢𝘱𝘱3], can be obtained from the report by Paciorek et al. (2009). [𝘩𝘵𝘵𝘱𝘴://𝘥𝘰𝘪.𝘰𝘳𝘨/10.1214/08-𝘈𝘖𝘈𝘚204]en_US
dc.description● Set phrase / statement can be found on the last page-
dc.description.abstractThe spatiotemporal evolution of high-concentration PM₂.₅ is a significant concern, especially when working with datasets that display complex spatiotemporal dependencies. Identifying the spatiotemporal covariance function in such cases is often challenging. The paper proposes a novel spatiotemporal dynamic quantile regression model (STDQM) that captures the temporal evolution of spatial processes by integrating a latent Gaussian process. To accommodate more complex data structures and expand the inferential capabilities of the asymmetric Laplace distribution within the standard quantile regression framework, the paper also proposes a more flexible STDQM based on the generalized asymmetric Laplace distribution. A substantial number of simulation studies demonstrate that the proposed methods significantly enhance inference quality and prediction accuracy compared to existing alternative methods. The new method is employed to analyse the influencing factors and spatiotemporal evolution of PM₂.₅ concentrations at various quantile levels in Lombardy, Italy, from 2016 to 2021.en_US
dc.description.sponsorshipBeijing Natural Science Foundation (No. 1242005), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (25XNN015). The research of K.Y. is supported by “the Fundamental Research Funds for the Central Universities” in UIBE (24QN09)en_US
dc.publisherOxford University Pressen_US
dc.rightsCopyright © The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com-
dc.rights.urihttps://academic.oup.com/pages/self_archiving_policy_b-
dc.subjectBayesian quantile regressionen_US
dc.subjectdynamic modelsen_US
dc.subjectlatent Gaussian processen_US
dc.subjectMarkov chain Monte Carloen_US
dc.subjectPM₂.₅concentrationen_US
dc.titleSpatiotemporal dynamic quantile regression models with applications to particulate matter concentration dataen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1093/jrsssc/qlaf040-
dc.relation.isPartOfJournal of the Royal Statistical Society Series C: Applied Statistics-
pubs.publication-statusPublished online-
dc.identifier.eissn1467-9876-
dc.rights.licenseThis article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)-
dc.contributor.orcidKeming Yu https://orcid.org/0000-0001-6341-8402-
Appears in Collections:Dept of Mathematics Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until 09/07/20262.08 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.