Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31877
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, M-
dc.contributor.authorMeng, L-
dc.contributor.authorWang, J-
dc.contributor.authorJin, Y-
dc.contributor.authorHu, B-
dc.contributor.authorChen, Y-
dc.date.accessioned2025-08-30T18:11:11Z-
dc.date.available2025-08-30T18:11:11Z-
dc.date.issued2019-12-31-
dc.identifierORCiD: Maozhen Li https://orcid.org/0000-0002-0820-5487-
dc.identifierORCiD: Lu Meng https://orcid.org/0000-0002-5990-4106-
dc.identifierORCiD: Jiaying Wang https://orcid.org/0000-0003-3992-0771-
dc.identifierORCiD: Yong Jin https://orcid.org/0000-0002-7664-1416-
dc.identifierORCiD: Binyu Hu https://orcid.org/0000-0003-4668-9459-
dc.identifierORCiD: Youxing Chen https://orcid.org/0000-0002-8915-2689-
dc.identifier.citationLi, M. et al. (2020) 'Application and Performance Optimization of MapReduce Model in Image Segmentation', IEEE Access, 8, pp. 31835 - 31844. doi: 10.1109/ACCESS.2019.2963343.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31877-
dc.description.abstractWith the increase of glass detection speed, some defects of MapReduce distributed computing framework are exposed, and the processing speed and timeliness cannot meet the requirements of glass-defect detection in industrial technology. Based on the MapReduce distributed computing framework, this paper designs a threshold segmentation method to complete the segmentation of glass-defect images. By improving the replication placement strategy and pipeline scheduling mechanism, the computing and storage are localized, and the timeliness of data processing is accelerated. The experimental results show that the improved MapReduce computing framework has an average increase of 14.8% in processing speed. It can detect the glass ribbon running at 800m/h and also detect the number, position and type of defects on the glass ribbon.en_US
dc.description.sponsorship10.13039/501100003398-Shanxi Scholarship Council of China (Grant Number: 2016–084); 10.13039/501100004480-Natural Science Foundation of Shanxi Province (Grant Number: 201901D111155).en_US
dc.format.extent31835 - 31844-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectdefects detectionen_US
dc.subjectdata localityen_US
dc.subjectimage segmentationen_US
dc.subjectMapReduce modelen_US
dc.subjectpipeline schedulingen_US
dc.titleApplication and Performance Optimization of MapReduce Model in Image Segmentationen_US
dc.typeArticleen_US
dc.date.dateAccepted2019-12-18-
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2019.2963343-
dc.relation.isPartOfIEEE Access-
pubs.publication-statusPublished-
pubs.volume8-
dc.identifier.eissn2169-3536-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2019-12-18-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2019 The Author(s) Published under license by Institute of Electrical and Electronics Engineers (IEEE). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/7.35 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons