Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Y-
dc.contributor.authorDu, F-
dc.contributor.authorChen, J-
dc.contributor.authorChen, Y-
dc.contributor.authorWang, Q-
dc.contributor.authorLi, M-
dc.date.accessioned2025-08-31T09:43:15Z-
dc.date.available2025-08-31T09:43:15Z-
dc.date.issued2019-12-05-
dc.identifierORCiD: Yan Huang https://orcid.org/0000-0001-7868-093X-
dc.identifierORCiD: Fuyu Du https://orcid.org/0000-0001-9651-971X-
dc.identifierORCiD: Jian Chen https://orcid.org/0000-0002-0760-0338-
dc.identifierORCiD: Yan Chen https://orcid.org/0000-0003-0409-9485-
dc.identifierORCiD: Qicong Wang https://orcid.org/0000-0001-7324-0433-
dc.identifierORCiD: Maozhen Li https://orcid.org/0000-0002-0820-5487-
dc.identifier.citationHuang, Y. et al. (2019) 'Generalized Pareto Model Based on Particle Swarm Optimization for Anomaly Detection', IEEE Access, 7, pp. 176329 - 176338. doi: 10.1109/ACCESS.2019.2957806.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31879-
dc.description.abstractAnomaly detection of time series has been widely used in various fields. Most detection methods depend either on assumptions about data distribution or manual threshold setting. If the assumption is incorrect, the effectiveness of detection technology will be greatly reduced. To deal with this problem, we propose a maximum likelihood estimation method based on particle swarm optimization for generalized Pareto model to detect outliers of time series, which can be called Generalized Pareto Model Based on Particle Swarm Optimization (GPMPSO). Because the generalized Pareto model is multidimensional, we introduce a comprehensive learning strategy to improve search ability of particle swarm algorithm. Due to the multiple peaks of the log-likelihood function of generalized Pareto model, we apply dynamic neighbors to reduce the possibility of particle swarm optimization falling into local optimum. Moreover, we propose a new processing model Big Drift Streaming Peak Over Threshold (BDSPOT) to enhance the capability of the data stream processor. Our algorithm is tested on various real-world datasets which demonstrate its very competitive performance.en_US
dc.description.sponsorshipShenzhen Science and Technology Projects (Grant Number: JCYJ20180306173210774); Scientific Research Foundation of Third Institute of Oceanography, MNR (Grant Number: 2019030); 10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 61671397).en_US
dc.format.extent176329 - 176338-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectanomaly detectionen_US
dc.subjectgeneralized pareto distributionen_US
dc.subjectparticle swarm optimizationen_US
dc.subjecttime seriesen_US
dc.titleGeneralized Pareto Model Based on Particle Swarm Optimization for Anomaly Detectionen_US
dc.typeArticleen_US
dc.date.dateAccepted2019-11-30-
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2019.2957806-
dc.relation.isPartOfIEEE Access-
pubs.publication-statusPublished-
pubs.volume7-
dc.identifier.eissn2169-3536-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2019-11-30-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2019 The Author(s) Published under license by Institute of Electrical and Electronics Engineers (IEEE). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/5.09 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons