Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31946
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Y-
dc.contributor.authordel Río Chanona, A-
dc.contributor.authorQuintanilla, P-
dc.coverage.spatialBratislava, Slovakia-
dc.date.accessioned2025-09-08T17:36:01Z-
dc.date.available2025-09-08T17:36:01Z-
dc.date.issued2025-06-16-
dc.identifierORCiD: Paulina Quintanilla https://orcid.org/0000-0002-7717-0556-
dc.identifier.citationWang, Y., del Río Chanona, A. and Quintanilla, P. (2025) 'Stochastic data-driven NMPC for partially observable systems using Gaussian processes: a mineral flotation case study', IFAC-PapersOnLine, 59 (6), pp. 109 - 114. doi: 10.1016/j.ifacol.2025.07.130.en_US
dc.identifier.issn2405-8971-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31946-
dc.description.abstractThis paper presents a nonlinear model predictive control (NMPC) strategy using Gaussian Processes (GPs) to control a froth flotation process under partial observability. The GP state-space model predicts future states for both observable and latent variables, using available data, while incorporating the probability distribution of these predictions into an optimization problem. This improves robustness against measurement noise and process disturbances and evaluates the impact of feed particle size, a typical process disturbance. We assessed the framework’s ability to maintain optimal process performance across varying operating conditions. The results demonstrate that the proposed GP-MPC framework improves process efficiency, even with frequent changes in particle size and measurement noise, confirming its potential for online control of partially observable systems.en_US
dc.format.extent109 - 114-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevier on behalf of International Federation of Automatic Controlen_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.source14th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2025-
dc.source14th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2025-
dc.subjectmodel predictive controlen_US
dc.subjectGaussian processesen_US
dc.subjectfroth flotationen_US
dc.subjectprocess controlen_US
dc.titleStochastic data-driven NMPC for partially observable systems using Gaussian processes: a mineral flotation case studyen_US
dc.typeConference Paperen_US
dc.identifier.doihttps://doi.org/10.1016/j.ifacol.2025.07.130-
dc.relation.isPartOfIFAC-PapersOnLine-
pubs.finish-date2025-06-19-
pubs.finish-date2025-06-19-
pubs.issue6-
pubs.publication-statusPublished-
pubs.start-date2025-06-16-
pubs.start-date2025-06-16-
pubs.volume59-
dc.identifier.eissn2405-8963-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Chemical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)1.71 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons