Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32120
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZuo, P-
dc.contributor.authorCao, X-
dc.contributor.authorLi, J-
dc.contributor.authorYuan, Y-
dc.contributor.authorFan, M-
dc.date.accessioned2025-10-09T13:36:09Z-
dc.date.available2025-10-09T13:36:09Z-
dc.date.issued2025-08-18-
dc.identifierORCiD: Xiaoling Cao https://orcid.org/0000-0001-7014-8658-
dc.identifierORCiD: Mizi Fan https://orcid.org/0000-0002-6609-3110-
dc.identifierArticle number: 124114-
dc.identifier.citationZuo, P. et al. (2025) 'A form-stable wood-based phase change material via double cross-linking esterification after removal of lignin for thermal energy storage', Renewable Energy, 256, 124114, pp. 1 - 12. doi: 10.1016/j.renene.2025.124114.en_US
dc.identifier.issn0960-1481-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32120-
dc.descriptionSupplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S0960148125017781?via%3Dihub#appsec1 .en_US
dc.description.abstractThis study developed a form-stable wood-based phase change material (FWPCM) via double cross-linking esterification (DCLE) to prevent PCM leakage and volume expansion. The mixture of polyethylene glycol (PEG) as a PCM and 1,2,3,4-butane tetracarboxylic acid (BTCA) as a cross-linking agent was vacuum-impregnated into delignified wood. Lignin removal was carried out using traditional alkali treatment (Na2SO3/NaOH) and deep eutectic solvent (DES) treatment, with the former removing most lignin and hemicellulose from the wood. The comparison revealed that DES-delignified wood (DW) avoids chemical hydrolysis of cellulose, effectively preserving the lignocellulosic skeleton. The exposed hydroxyl groups in cellulose promoted DCLE, which was confirmed by FTIR and XPS. A small amount of BTCA was added to create ester bonds with cellulose to stabilize PEG in the DW, resulting in the FWPCM that demonstrated excellent leakage resistance and a higher encapsulation rate of 84.75 %. The phase change exhibited a maximum enthalpy of 150.1 J·g-1 at 58.5 °C. FWPCM showed anisotropic heat transfer characteristic (radial 0.14 W/(m·K), longitudinal 0.19 W/(m·K)), high thermal stability (283 °C), and excellent cycling durability (200 cycles). This study provides a reliable, cost-effective and eco-friendly thermal energy storage material for building energy conservation.en_US
dc.description.sponsorshipThe work of this paper is sponsored by the National Key Research and Development Program of China (Grant No. 2022YFC3802704) and the National Natural Science Foundation of China (Grant No.52108097).en_US
dc.format.extent1 - 12-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectwood-based phase change materialen_US
dc.subjectthermal energy storageen_US
dc.subjectcross-linking esterificationen_US
dc.subjectdelignificationen_US
dc.subjectdeep eutectic solventen_US
dc.titleA form-stable wood-based phase change material via double cross-linking esterification after removal of lignin for thermal energy storageen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-08-02-
dc.identifier.doihttps://doi.org/10.1016/j.renene.2025.124114-
dc.relation.isPartOfRenewable Energy-
pubs.publication-statusPublished-
pubs.volume256-
dc.identifier.eissn1879-0682-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2025-08-02-
dc.rights.holderElsevier Ltd.-
Appears in Collections:Dept of Civil and Environmental Engineering Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until 18 August 2026. Copyright © Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing).2.78 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons