Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/32398Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Zhao, Q | - |
| dc.contributor.author | He, Y | - |
| dc.contributor.author | Jiang, C | - |
| dc.contributor.author | Wang, P | - |
| dc.contributor.author | Qi, M | - |
| dc.contributor.author | Li, M | - |
| dc.date.accessioned | 2025-11-24T15:22:27Z | - |
| dc.date.available | 2025-11-24T15:22:27Z | - |
| dc.date.issued | 2016-05-31 | - |
| dc.identifier | ORCiD: Maozhen Li https://orcid.org/0000-0002-0820-5487 | - |
| dc.identifier.citation | Zhao, Q. et al. (2016) 'Integration of link and semantic relations for information recommendation', Computing and Informatics, 35 (1), pp. 30 - 54. Available at: https://www.cai.sk/ojs/index.php/cai/article/view/2600 | en_US |
| dc.identifier.issn | 1335-9150 | - |
| dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/32398 | - |
| dc.description.abstract | Information services on the Internet are being used as an important tool to facilitate discovery of the information that is of user interests. Many approaches have been proposed to discover the information on the Internet, while the search engines are the most common ones. However, most of the current approaches of information discovery can discover the keyword-matching information only but cannot recommend the most recent and relative information to users automatically. Sometimes users can give only a fuzzy keyword instead of an accurate one. Thus, some desired information would be ignored by the search engines. Moreover, the current search engines cannot discover the latent but logically relevant information or services for users. This paper measures the semantic-similarity and link-similarity between keywords. Based on that, it introduces the concept of similarity of web pages, and presents a method for information recommendation. The experimental evaluation and comparisons with the existing studies are finally performed. | en_US |
| dc.description.sponsorship | This work was supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No. 91218301 and HongKong, Macao and Taiwan Science and Technology Cooperation Program of China under Grant No. 2013DFM10100. | en_US |
| dc.format.extent | 30 - 54 | - |
| dc.format.medium | Print-Electronic | - |
| dc.language.iso | en_US | en_US |
| dc.publisher | Slovak Academy of Sciences | en_US |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | - |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
| dc.source.uri | https://www.cai.sk/ojs/index.php/cai/article/view/2600 | - |
| dc.subject | information retrieval | en_US |
| dc.subject | data mining | en_US |
| dc.subject | link similarity | en_US |
| dc.subject | information recommendation | en_US |
| dc.title | Integration of link and semantic relations for information recommendation | en_US |
| dc.type | Article | en_US |
| dc.relation.isPartOf | Computing and Informatics | - |
| pubs.issue | 1 | - |
| pubs.publication-status | Published | - |
| pubs.volume | 35 | - |
| dc.identifier.eissn | 2585-8807 | - |
| dc.rights.license | https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en | - |
| dc.rights.holder | Slovak Academy of Sciences | - |
| Appears in Collections: | Dept of Electronic and Electrical Engineering Research Papers | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FullText.pdf | Copyright © 2016 Slovak Academy of Sciences. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/). | 1.63 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License