Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32489
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, X-
dc.contributor.authorMeng, H-
dc.contributor.authorLi, Z-
dc.date.accessioned2025-12-12T16:10:33Z-
dc.date.available2025-12-12T16:10:33Z-
dc.date.issued2025-12-04-
dc.identifierORCiD: Xindi Huang https://orcid.org/0009-0005-0580-3886-
dc.identifierORCiD: Hongying Meng https://orcid.org/0000-0002-8836-1382-
dc.identifierORCiD: Zhangyong Li https://orcid.org/0000-0002-3918-069X-
dc.identifierArticle number: 1327-
dc.identifier.citationHuang, X., Meng, H. and Li, Z. (2025) 'Epileptic Seizure Detection Using Hyperdimensional Computing and Binary Naive Bayes Classifier, Bioengineering, 12 (12), 1327, pp. 1 - 14. doi: 10.3390/bioengineering12121327.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32489-
dc.descriptionData Availability Statement: The SWEC-ETHZ short-term iEEG dataset used in this study is publicly available at http://ieeg-swez.ethz.ch/ (accessed on 1 December 2025).en_US
dc.description.abstractEpileptic seizure (ES) detection is critical for improving clinical outcomes in epilepsy management. While intracranial EEG (iEEG) provides high-quality neural recordings, existing detection methods often rely on large amounts of data, involve high computational complexity, or fail to generalize in low-data settings. In this paper, we propose a lightweight, data-efficient, and high-performance approach for ES detection based on hyperdimensional computing (HDC). Our method first extracts local binary patterns (LBPs) from each iEEG channel to capture temporal–spatial dynamics. These binary sequences are then mapped into a high-dimensional space via HDC for robust representation, followed by a binary Naive Bayes classifier to distinguish ictal and inter-ictal states. The proposed design enables fast inference, low memory requirements, and suitability for hardware implementation. We evaluate the method on the SWEC-ETHZ iEEG short-term dataset. In one-shot learning, it achieves 100% sensitivity and specificity for most patients. In few-shot learning, it maintains 98.88% sensitivity and 93.09% specificity on average. The average latency is 4.31 s, demonstrating that it is much better than state-of-the-art methods. These results demonstrate the method’s potential for efficient, low-resource, and high-performance ES detection.en_US
dc.description.sponsorshipThis research was funded by the Royal Society (IEC\NSFC\223285) and National Natural Science Foundation of China (General Program) No. 62171073.en_US
dc.format.extent1 - 14-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectepileptic seizures detectionen_US
dc.subjectelectroencephalogramen_US
dc.subjectbiomedical signal processingen_US
dc.subjecthyperdimensional computingen_US
dc.subjectbinary Naive Bayes classifieren_US
dc.titleEpileptic Seizure Detection Using Hyperdimensional Computing and Binary Naive Bayes Classifieren_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.3390/bioengineering12121327-
dc.relation.isPartOfBioengineering-
pubs.issue12-
pubs.publication-statusPublished online-
pubs.volume12-
dc.identifier.eissn2306-5354-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe authors-
dc.contributor.orcidXindi Huang [0009-0005-0580-3886]-
dc.contributor.orcidHongying Meng [0000-0002-8836-1382]-
dc.contributor.orcidZhangyong Li [0000-0002-3918-069X]-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).2.35 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons