Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32776
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKenanda, MA-
dc.contributor.authorHammadi, F-
dc.contributor.authorBahai, H-
dc.contributor.authorBelabed, Z-
dc.date.accessioned2026-02-03T20:08:09Z-
dc.date.available2026-02-03T20:08:09Z-
dc.date.issued2025-10-21-
dc.identifierORCiD: Hamid Bahai https://orcid.org/0000-0002-3476-9104-
dc.identifierArticle number: 113719-
dc.identifier.citationKenanda, M.A. et al. (2026) 'A new efficient nonlocal hyperbolic HSDT for mechanical vibration of porous FGM plates/nanoplates using Navier's method and artificial neural network prediction', International Journal of Solids and Structures, 325, 113719, pp. 1 - 19. doi: 10.1016/j.ijsolstr.2025.113719.en_US
dc.identifier.issn0020-7683-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32776-
dc.descriptionHighlights: • A new hyperbolic HSDT is proposed for porous FGM plates/nanoplates vibration. • Navier’s method is used to analyze porous FGM nanoplates with nonlocal elasticity. • Fundamental frequencies are predicted by ANN in MATLAB to cut computation cost. • Porosity effects on fundamental frequencies are studied by types A and B patterns. • Porosity pattern transitions in Type B are achieved by controlling parameter 𝑅. .en_US
dc.description.abstractThis paper introduces a new efficient hyperbolic high-order shear deformation theory (HHSDT) with a shape parameter (<i>Sₚ</i>) to study the vibration response of porous functionally graded material (FGM) plates and nanoplates. The shape parameter is optimized using a simple algorithm that adopts a neighbor selection strategy inspired by local-search algorithms, in order to obtain optimal frequencies. The equations of motion are derived using Hamilton’s principle, based on a 2D displacement field that contains only four unknowns, and are solved using Navier’s method. Nanoscale effects are considered through Eringen’s nonlocal elasticity theory. Moreover, MATLAB software is used to predict the fundamental frequencies using an artificial neural network (ANN), aiming to reduce computational cost. The effect of porosities on fundamental frequencies is studied using two types of uneven distributions (Type A and Type B). The novel Type B allows transitions between different distributions by controlling the parameter 𝑅. The current 2D-HHSDT provides more accurate results than many other 2D and quasi-3D HSDTs when compared with exact 3D solutions.en_US
dc.format.extent1 - 19-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectporous FGM nanoplateen_US
dc.subjectHHSDTen_US
dc.subjectuneven porosity distributionsen_US
dc.subjectnonlocal elasticity theoryen_US
dc.subjectartificial neural networken_US
dc.titleA new efficient nonlocal hyperbolic HSDT for mechanical vibration of porous FGM plates/nanoplates using Navier's method and artificial neural network predictionen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-10-17-
dc.identifier.doihttps://doi.org/10.1016/j.ijsolstr.2025.113719-
dc.relation.isPartOfInternational Journal of Solids and Structures-
pubs.issue15 January 2026-
pubs.publication-statusPublished-
pubs.volume325-
dc.identifier.eissn1879-2146-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2025-10-17-
dc.rights.holderElsevier Ltd.-
dc.contributor.orcidBahai, Hamid [0000-0002-3476-9104]-
Appears in Collections:Institute of Materials and Manufacturing

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until 21 October 2026. Copyright © 2025 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing)801.54 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons