Please use this identifier to cite or link to this item:
Title: Condensation in microchannels – Surface tension dominated regime
Authors: Wang, HS
Rose, JW
2nd Micro and Nano Flows Conference (MNF2009)
Keywords: Condensation;Microchannel;Surface tension;Refrigerant;Heat exchanger
Issue Date: 2009
Publisher: Brunel University
Citation: 2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009
Abstract: A theoretical model, developed by the authors, for condensation in microchannels takes account of the effects of gravity, streamwise shear stress on the condensate surface as well as the transverse pressure gradient due to surface tension in the presence of change in condensate surface curvature. Numerical results have been generated for various channel shapes, dimensions and inclinations and for various fluids, vapourto-surface temperature differences and vapour mass fluxes. It is found that, over a certain length of channel, the local mean (around the channel perimeter) heat-transfer coefficient is essentially independent of gravity (including inclination of the channel) and surface shear stress and depends only on surface tension. For the surface tension dominated regime an equation for the Nusselt number, as a function of a single dimensionless group analogous to that occurring in the simple Nusselt theory except that the gravity is replaced by surface tension, has been derived both on the basis of dimensional analysis and by approximate theory. The equation represents all of the data satisfactorily.
Description: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
ISBN: 978-1-902316-72-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2009.pdf281.29 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.