Please use this identifier to cite or link to this item:
Title: Constant depth microfluidic networks based on a generalised Murray’s law for Newtonian and power-law fluids
Authors: Zografos, K
Barber, RW
Emerson, DR
Oliveira, MSN
4th Micro and Nano Flows Conference (MNF2014)
Keywords: Microfluidics;Non-newtonian fluids;Murray’s law;Biomimetics;Bifurcating networks
Issue Date: 2014
Publisher: Brunel University London
Citation: 4th Micro and Nano Flows Conference, University College London, UK, 7-10 September 2014, Editors CS König, TG Karayiannis and S. Balabani
Series/Report no.: ID 42
Abstract: Microfluidic bifurcating networks of rectangular cross-sectional channels are designed using a novel biomimetic rule, based on Murray’s law. Murray’s principle is extended to consider the flow of power-law fluids in planar geometries (i.e. of constant depth rectangular cross-section) typical of lab-on-a-chip applications. The proposed design offers the ability to control precisely the shear-stress distributions and to predict the flow resistance along the network. We use an in-house code to perform computational fluid dynamics simulations in order to assess the extent of the validity of the proposed design for Newtonian, shear-thinning and shear-thickening fluids under different flow conditions.
Description: This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community,
ISBN: 978-1-908549-16-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.