Please use this identifier to cite or link to this item:
Title: Microfluidic mixing of low viscosity Boger fluids
Authors: Preziosi, V
Tomaiuolo, G
Fenizia, M
D’Apolito, R
Caserta, S
Guido, S
4th Micro and Nano Flows Conference (MNF2014)
Keywords: Mixing;non-Newtonian;Boger fluids;Microfluidics
Issue Date: 2014
Publisher: Brunel University London
Citation: 4th Micro and Nano Flows Conference, University College London, UK, 7-10 September 2014, Editors CS König, TG Karayiannis and S. Balabani
Series/Report no.: ID 109
Abstract: This study is focused on the development of low viscosity Boger fluids and on the investigation of their elasticity on emulsion formation. Non-Newtonian continuous phases (Boger fluids) made of two different molecular weight Polyacrylamide in water plus glycerol solutions were used. While, as Newtonian continuous phase, a water plus glycerol solution showing the same viscosity as the non-Newtonian one was prepared and as dispersed phase silicon oil was used. Visualization of these emulsions flowing through a micromixer was useful in order to extract quantitative informations of their behavior, such as the velocity profile and droplets’ size distribution. Then the formation of vortex upstream of a divergent-convergent configuration has been shown as the wall migration effect, which drives droplets away from the walls and toward the center of the microcapillary investigated.
Description: This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community,
ISBN: 978-1-908549-16-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2014_Full-paper_Preziosi_V..pdf424.74 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.