Please use this identifier to cite or link to this item:
Title: Naturalistic Affective Expression Classification by a Multi-Stage Approach Based on Hidden Markov Models
Authors: Meng, H
Bianchi-Berthouze, N
Keywords: Emotion recognition;Affective computing;Multi-stage recognition;Affective dimensions;Spontaneous emotions;Hidden MarkovModels
Issue Date: 2011
Publisher: Springer
Citation: LNCS, 6975 pp. 378 - 387, 2011
Abstract: In naturalistic behaviour, the affective states of a person change at a rate much slower than the typical rate at which video or audio is recorded (e.g. 25fps for video). Hence, there is a high probability that consecutive recorded instants of expressions represent a same affective content. In this paper, a multi-stage automatic affective expression recognition system is proposed which uses Hidden Markov Models (HMMs) to take into account this temporal relationship and finalize the classification process. The hidden states of the HMMs are associated with the levels of affective dimensions to convert the classification problem into a best path finding problem in HMM. The system was tested on the audio data of the Audio/Visual Emotion Challenge (AVEC) datasets showing performance significantly above that of a one-stage classification system that does not take into account the temporal relationship, as well as above the baseline set provided by this Challenge. Due to the generality of the approach, this system could be applied to other types of affective modalities.
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf236.27 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.