Please use this identifier to cite or link to this item:
Title: Nonlinear multi-scale homogenization with different structural models at different scales
Authors: Edmans, BD
Alfano, G
Bahai, H
Keywords: Nonlinear homogenization;Structural-to-structural scale-bridging;Multi-scale analysis;Multi-scale convergence
Issue Date: 2013
Publisher: Wiley
Citation: International Journal for Numerical Methods in Engineering, 94, (4): pp. 355 - 373, (2013)
Abstract: We present an extension of the computational homogenization theory to cases where different structural models are used at different scales and no energy potential can be defined at the small scale. We observe that volumetric averaging, which is not applicable in such cases unless similarities exist in the macro-scale and micro-scale models, is not a necessary prerequisite to carry out computational homogenization. At each material point of the macro-model, we replace the conventional representative volume element with a representative domain element (RDE). To link the large-scale and small-scale problems, we then introduce a linear operator, mapping the smooth part of the small-scale displacement field of each RDE to the large-scale strain field and a trace operator to impose boundary conditions in the RDE. The latter is defined on the basis of engineering judgement, analogously to the conventional theory. A generalized Hill’s condition, rather than being invoked, is derived from duality principles and is used to recover the stress measures at the large scale. For the implementation in a nonlinear finite-element analysis, ‘control nodes’ and constraint equationsare used. The effectiveness of the procedure is demonstrated for three beam-to-truss example problems, for which multi-scale convergence is numerically analysed.
ISSN: 0029-5981
Appears in Collections:Dept of Mechanical Aerospace and Civil Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf667.92 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.