Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/12454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdler, SL-
dc.contributor.authorBrody, DC-
dc.contributor.authorBrun, TA-
dc.contributor.authorHughston, LP-
dc.date.accessioned2016-04-06T11:27:32Z-
dc.date.available2001-10-26-
dc.date.available2016-04-06T11:27:32Z-
dc.date.issued2001-
dc.identifier.citationJournal of Physics A, 34, (42): pp. 8795 - 8820, (2001)en_US
dc.identifier.issn0305-4470-
dc.identifier.urihttp://iopscience.iop.org/article/10.1088/0305-4470/34/42/306/meta;jsessionid=BCD99031B690D204F5A15CF033BB6568.c3-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/12454-
dc.description.abstractStochastic models for quantum state reduction give rise to statistical laws that are in most respects in agreement with those of quantum measurement theory. Here we examine the correspondence of the two theories in detail, making a systematic use of the methods of martingale theory. An analysis is carried out to determine the magnitude of the fluctuations experienced by the expectation of the observable during the course of the reduction process and an upper bound is established for the ensemble average of the greatest fluctuations incurred. We consider the general projection postulate of L¨uders applicable in the case of a possibly degenerate eigenvalue spectrum, and derive this result rigorously from the underlying stochastic dynamics for state reduction in the case of both a pure and a mixed initial state. We also analyse the associated Lindblad equation for the evolution of the density matrix, and obtain an exact time-dependent solution for the state reduction that explicitly exhibits the transition from a general initial density matrix to the L¨uders density matrix. Finally, we apply Girsanov’s theorem to derive a set of simple formulae for the dynamics of the state in terms of a family of geometric Brownian motions, thereby constructing an explicit unravelling of the Lindblad equation.en_US
dc.format.extent8795 - 8820 (26)-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.titleMartingale models for quantum state reductionen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1088/0305-4470/34/42/306-
dc.relation.isPartOfJournal of Physics A-
pubs.issue42-
pubs.volume34-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf315.14 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.