Please use this identifier to cite or link to this item:
Title: Optimal C-type Filter for Harmonics Mitigation and Resonance Damping in Industrial Distribution Systems
Authors: Abdel Aleem, SHE
Zobaa, AF
Keywords: Damped filters;Harmonic distortion;Optimization;Reactive power compensation;Resonance
Issue Date: 2016
Citation: Electrical Engineering, pp. 1 - 12, (2016)
Abstract: Single-tuned passive filters offer reasonable mitigation for harmonic distortion at a specific harmonic frequency with a high filtering percentage, but resonance hazards exist. Traditional damped filters offer high-pass filtering for the high-frequency range, but suffer from extra ohmic losses. C-type filters may operate in a manner similar to the tuned filters with low damping losses and marginal resonance damping capabilities. Also, they can be designed as damped filters with increased resonance damping capability. In this paper, a methodology that facilitates sizing for the C-type damped filter parameters for harmonics mitigation and resonance damping in balanced distribution system networks, is presented and discussed using the impedance-frequency index. This index evaluates the resonance damping capability provided by the damped filters analytically rather than the conventional graphical method of impedance-frequency scanning. It shows how to size shunt passive filters, while making a full use of their damping capabilities. It can disclose the parallel resonance frequencies of the equivalent system-filter impedance. A comparative study of the new approach and a conventional filter design approach, which aims to minimize total harmonic current distortion, is presented. Numerous simulation results are provided to clarify the proposed methodology, advantages, and disadvantages.
DOI: http://dx.doi.org10.1007/s00202-016-0406-1
ISSN: 0948-7921
Appears in Collections:Dept of Electronic and Computer Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf977.34 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.