Please use this identifier to cite or link to this item:
Title: On incremental and robust subspace learning
Authors: Li, Y
Xu, L-Q
Morphett, J
Jacobs, R
Keywords: Principal Component Analysis (PCA);incremental PCA;robust PCA;background modelling;multi-view face modelling
Issue Date: 2003
Citation: 2003
Abstract: Principal Component Analysis (PCA) has been of great interest in computer vision and pattern recognition. In particular, incrementally learning a PCA model, which is computationally efficient for large scale problems as well as adaptable to reflect the variable state of a dynamic system, is an attractive research topic with numerous applications such as adaptive background modelling and active object recognition. In addition, the conventional PCA, in the sense of least mean squared error minimisation, is susceptible to outlying measurements. To address these two important issues, we present a novel algorithm of incremental PCA, and then extend it to robust PCA. Compared with the previous studies on robust PCA, our algorithm is computationally more efficient. We demonstrate the performance of these algorithms with experimental results on dynamic background modelling and multi-view face modelling. Keywords Principal Component Analysis (PCA), incremental PCA, robust PCA, background modelling, multi-view face modelling
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf553.03 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.