Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGutt, R-
dc.contributor.authorKohr, M-
dc.contributor.authorMikhailov, SE-
dc.contributor.authorWedland, WL-
dc.identifier.citationMathematical Methods in the Applied Sciencesen_US
dc.description.abstractThe purpose of this paper is to study the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy- Forchheimer-Brinkman system in Lp-based Besov spaces on a bounded Lipschitz domain in R3, with p in a neighbourhood of 2. This system is obtained by adding the semilinear term juju to the linear Brinkman equation. First, we provide some results about equivalence between the Gagliardo and non-tangential traces, as well as between the weak canonical conormal derivatives and the non-tangential conormal derivatives. Various mapping and invertibility properties of some integral operators of potential theory for the linear Brinkman system, and well posedness results for the Dirichlet and Neumann problems in Lp-based Besov spaces on bounded Lipschitz domains in Rn (n 3) are also presented. Then, employing integral potential operators, we show the well-posedness in L2-based Sobolev spaces for the mixed problem of Dirichlet-Neumann type for the linear Brinkman system on a bounded Lipschitz domain in Rn (n 3). Further, by using some stability results of Fredholm and invertibility properties and exploring invertibility of the associated Neumann-to-Dirichlet operator, we extend the well-posedness property to some Lp-based Sobolev spaces. Next we use the well-posedness result in the linear case combined with a xed point theorem in order to show the existence and uniqueness for a mixed boundary value problem of Dirichlet and Neumann type for the semilinear Darcy-Forchheimer-Brinkman system in Lp-based Besov spaces, with p 2 (2 􀀀 "; 2 + ") and some parameter " > 0.en_US
dc.subjectSemilinear Darcy-Forchheimer-Brinkman systemen_US
dc.subjectmixed Dirichlet-Neumann problemen_US
dc.subjectlayer potential operatorsen_US
dc.subjectNeumann-to-Dirichlet operatoren_US
dc.subjectexistence and uniqueness.en_US
dc.titleOn the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domainsen_US
dc.relation.isPartOfMathematical Methods in the Applied Sciences-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf877.79 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.