Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/16439Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Liu, X | - |
| dc.contributor.author | Yu, K | - |
| dc.contributor.author | Xu, Q | - |
| dc.contributor.author | Tang, X | - |
| dc.date.accessioned | 2018-06-26T10:33:54Z | - |
| dc.date.available | 2018-06-26T10:33:54Z | - |
| dc.date.issued | 2018-07-09 | - |
| dc.identifier.citation | Liu, X. et al. (2018) 'Improved local quantile regression', Statistical Modelling, 19 (5), pp. 501 - 523. doi:10.1177/1471082X18782057 | en_US |
| dc.identifier.issn | 1471-082X | - |
| dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/16439 | - |
| dc.description.abstract | We investigate a new kernel-weighted likelihood smoothing quantile regression method. The likelihood is based on a normal scale-mixture representation of asymmetric Laplace distribution (ALD). This approach enjoys the same good design adaptation as the local quantile regression (Spokoiny et al., 2013, Journal of Statistical Planning and Inference, 143, 1109–1129), particularly for smoothing extreme quantile curves, and ensures non-crossing quantile curves for any given sample. The performance of the proposed method is evaluated via extensive Monte Carlo simulation studies and one real data analysis. | - |
| dc.description.sponsorship | The research was partially supported by Major Program of the National Natural Science Foundation of China (Grant No. 71490725) and the BUL Research Leave funding, the National Science Foundation of China (No 11261048). | en_US |
| dc.format.extent | 501 - 523 | - |
| dc.format.medium | Print-Electronic | - |
| dc.language.iso | en | en_US |
| dc.publisher | SAGE Publications | en_US |
| dc.rights | Copyright © 2018 SAGE Publications. Liu ,X., Yu, K., Xu, Q., Tang, X.. Improved local quantile regression. Statistical Modelling. 2018;19(5):501-523. doi:10.1177/1471082X18782057 (see: https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use). | - |
| dc.rights.uri | https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use | - |
| dc.subject | Bandwidth Selection | en_US |
| dc.subject | Nonparametric Quantile Regression | en_US |
| dc.subject | Quantile | en_US |
| dc.title | Improved local quantile regression | en_US |
| dc.type | Article | en_US |
| dc.date.dateAccepted | 2018-05-18 | - |
| dc.identifier.doi | https://doi.org/10.1177/1471082X18782057 | - |
| dc.relation.isPartOf | Statistical Modelling | - |
| pubs.publication-status | Published | - |
| dc.identifier.eissn | 1477-0342 | - |
| dcterms.dateAccepted | 2018-05-18 | - |
| dc.rights.holder | SAGE Publications | - |
| Appears in Collections: | Dept of Mathematics Research Papers | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FullText.pdf | Copyright © 2018 SAGE Publications. Liu X, Yu K, Xu Q, Tang X. Improved local quantile regression. Statistical Modelling. 2018;19(5):501-523. doi:10.1177/1471082X18782057 (see: https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use). | 1.55 MB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.