Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/16439
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, X-
dc.contributor.authorYu, K-
dc.contributor.authorXu, Q-
dc.contributor.authorTang, X-
dc.date.accessioned2018-06-26T10:33:54Z-
dc.date.available2018-06-26T10:33:54Z-
dc.date.issued2018-07-09-
dc.identifier.citationLiu, X. et al. (2018) 'Improved local quantile regression', Statistical Modelling, 19 (5), pp. 501 - 523. doi:10.1177/1471082X18782057en_US
dc.identifier.issn1471-082X-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/16439-
dc.description.abstractWe investigate a new kernel-weighted likelihood smoothing quantile regression method. The likelihood is based on a normal scale-mixture representation of asymmetric Laplace distribution (ALD). This approach enjoys the same good design adaptation as the local quantile regression (Spokoiny et al., 2013, Journal of Statistical Planning and Inference, 143, 1109–1129), particularly for smoothing extreme quantile curves, and ensures non-crossing quantile curves for any given sample. The performance of the proposed method is evaluated via extensive Monte Carlo simulation studies and one real data analysis.-
dc.description.sponsorshipThe research was partially supported by Major Program of the National Natural Science Foundation of China (Grant No. 71490725) and the BUL Research Leave funding, the National Science Foundation of China (No 11261048).en_US
dc.format.extent501 - 523-
dc.format.mediumPrint-Electronic-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rightsCopyright © 2018 SAGE Publications. Liu ,X., Yu, K., Xu, Q., Tang, X.. Improved local quantile regression. Statistical Modelling. 2018;19(5):501-523. doi:10.1177/1471082X18782057 (see: https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use).-
dc.rights.urihttps://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use-
dc.subjectBandwidth Selectionen_US
dc.subjectNonparametric Quantile Regressionen_US
dc.subjectQuantileen_US
dc.titleImproved local quantile regressionen_US
dc.typeArticleen_US
dc.date.dateAccepted2018-05-18-
dc.identifier.doihttps://doi.org/10.1177/1471082X18782057-
dc.relation.isPartOfStatistical Modelling-
pubs.publication-statusPublished-
dc.identifier.eissn1477-0342-
dcterms.dateAccepted2018-05-18-
dc.rights.holderSAGE Publications-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2018 SAGE Publications. Liu X, Yu K, Xu Q, Tang X. Improved local quantile regression. Statistical Modelling. 2018;19(5):501-523. doi:10.1177/1471082X18782057 (see: https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use).1.55 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.