Please use this identifier to cite or link to this item:
Title: Individual eigenvalue distributions of chiral random two-matrix theory and the determination of F_pi
Authors: Akemann, G
Damgaard, PH
Keywords: Matrix Models;Lattice QCD;Chiral Lagrangians
Issue Date: 2008
Abstract: Dirac operator eigenvalues split into two when subjected to two different external vector sources. In a specific finite-volume scaling regime of gauge theories with fermions, this problem can be mapped to a chiral Random Two-Matrix Theory. We derive analytical expressions to leading order in the associated finite-volume expansion, showing how individual Dirac eigenvalue distributions and their correlations equivalently can be computed directly from the effective chiral Lagrangian in the epsilon-regime. Because of its equivalence to chiral Random Two-Matrix Theory, we use the latter for all explicit computations. On the mathematical side, we define and determine gap probabilities and individual eigenvalue distributions in that theory at finite N, and also derive the relevant scaling limit as N is taken to infinity. In particular, the gap probability for one Dirac eigenvalue is given in terms of a new kernel that depends on the external vector source. This expression may give a new and simple way of determining the pion decay constant F_pi from lattice gauge theory simulations.
Appears in Collections:Mathematical Physics
Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
AD08arXiv1.pdf313.02 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.