Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDong, X-
dc.contributor.authorYoussef, H-
dc.contributor.authorZhang, Y-
dc.contributor.authorYang, H-
dc.contributor.authorWang, S-
dc.contributor.authorJi, S-
dc.identifier.citationMaterials and Design, 2020, 186en_US
dc.description.abstractThe global carbon emission reduction strongly requires high strength lightweight die-cast aluminium alloys in industry. Here die-cast AlSiMgMn–TiB2 composites with advanced mechanical performance were fabricated by the implantation of TiB2 nanoparticles. Super vacuum assisted high pressure die casting was applied to enable the T6 heat treatment of the composites, and the super vacuum of 20 mbar was achieved in the limited evacuation time of 1.6 s. The composites demonstrated good die castability within the addition of 3.5 wt% TiB2, while the composites could not fill into the chill vent with the addition of >3.5 wt% TiB2. The composite with 3.5 wt% TiB2 nanoparticles delivered the high hardness of 150.2 kg/mm2, yield strength of 351 MPa, tensile strength of 410 MPa, and the industrially applicable good ductility of 5.2%, after T6 heat treatment. The strengthening of the T6 heat treated composite was a result of both TiB2 nanoparticles and nanoscale β′′ precipitates that had coherent interfaces with α–Al matrix, i.e., Al(11-1)//TiB2(0001), Al[011]//TiB2[11-20], Al[320]//β″(a-axis), Al[1-30]//β″(c-axis) and Al(020)//β″(b-axis). The T6 heat treated composite reinforced by 3.5 wt% TiB2 showed ductile fracture.en_US
dc.description.sponsorshipInnovate UK; National Natural Science Foundation of Chinaen_US
dc.subjectAluminium alloyen_US
dc.subjectHigh pressure die castingen_US
dc.subjectSuper vacuumen_US
dc.subjectNano reinforcementen_US
dc.titleAdvanced heat treated die-cast aluminium composites fabricated by TiB<inf>2</inf> nanoparticle implantationen_US
dc.relation.isPartOfMaterials and Design-
Appears in Collections:Dept of Mechanical Aerospace and Civil Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf7.91 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.