Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/20119
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFang, C-
dc.contributor.authorMohammodi, V-
dc.contributor.authorNihtianov, S-
dc.contributor.authorSluiter, M-
dc.date.accessioned2020-01-28T11:28:29Z-
dc.date.available2020-01-28T11:28:29Z-
dc.date.issued2020-03-10-
dc.identifierORCID iDs: C M Fang https://orcid.org/0000-0003-0915-7453; M H F Sluiter https://orcid.org/0000-0002-6514-4318.-
dc.identifier235201-
dc.identifier.citationFang, C. et al. (2020) 'Stability, geometry and electronic properties of BH<sub>n</sub> (n = 0 to 3) radicals on the Si{0 0 1}3×1:H surface from first-principles', Journal of Physics: Condensed Matter, 32 (23), 235201, pp. 1 - 10. doi: 10.1088/1361-648x/ab6e43.en_US
dc.identifier.issn0953-8984-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/20119-
dc.description.abstract© Copyright 2020 The Author(s). A new generation of radiation detectors relies on the crystalline Si and amorphous B (c-Si/a-B) junctions that are prepared through chemical vapor deposition of diborane (B2H6) on Si at low temperature (~400 °C). The Si wafer surface is dominated by the Si{0 0 1}3  ×  1 domains that consist of two different Si species at low temperature. Here we investigate the geometry, stability and electronic properties of the hydrogen passivated Si{0 0 1}3  ×  1 surfaces with deposited BHn (n  =  0 to 3) radicals using parameter-free first-principles approaches. Ab initio molecular dynamics simulations using the density functional theory (DFT) including van der Waals interaction reveal that in the initial stage the BH3 molecules/radicals deposit on the Si(–H), forming (–Si)BH4 radicals which then decompose into (–Si)BH2 with release of H2 molecules. Structural optimizations provide strong local relaxation and reconstructions at the deposited Si surface. Electronic structure calculations reveal the formation of various defect states in the forbidden gap. This indicates limitations of the presently used rigid electron-counting and band-filling models. The attained information enhances our understanding of the initial stage of the PureB process and the electric properties of the products.-
dc.format.extent1 - 10-
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.rights© Copyright 2020 The Author(s). Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence (https://creativecommons.org/licenses/by/4.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectdepositions and chemical reactionen_US
dc.subjectBHn radicalsen_US
dc.subjectSi(0 0 1) surfaceen_US
dc.subjectab initio molecular dynamicsen_US
dc.subjectelectronic propertiesen_US
dc.titleStability, geometry and electronic properties of BH<sub>n</sub> (n = 0 to 3) radicals on the Si{0 0 1}3×1:H surface from first-principlesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1088/1361-648x/ab6e43-
dc.relation.isPartOfJournal of Physics: Condensed Matter-
pubs.issue23-
pubs.publication-statusPublished-
pubs.volume32-
dc.identifier.eissn1361-648X-
dc.rights.holderThe Author(s)-
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
FullText.pdf2.48 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons