Please use this identifier to cite or link to this item:
Title: Improved orders of approximation derived from interpolatory cubic splines
Authors: Behforooz, GH
Papamichael, N
Issue Date: 1978
Publisher: Brunel University
Citation: Maths Technical Papers (Brunel University). Jun 1978, pp 1-13
Abstract: Let s be a cubic spline, with equally spaced knots on [a,b], interpolating a given function y at the knots. The parameters which determine s are used to construct a piecewise defined polynomial P of degree four. It is shown that P can be used to give better orders of approximation to y and its derivatives than those obtained from s. It is also shown that the known superconvergence properties of the derivatives of s, at specific points [a,b], are all special cases of the main result contained in the present paper.
Appears in Collections:Dept of Mathematics Research Papers
Mathematical Sciences

Files in This Item:
File Description SizeFormat 
TR_83.pdf237.88 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.