Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/20326
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiao, Y-H-
dc.contributor.authorShih, C-H-
dc.contributor.authorAbbod, M-
dc.contributor.authorShieh, J-S-
dc.contributor.authorHsiao, Y-J-
dc.date.accessioned2020-02-18T11:27:16Z-
dc.date.available2020-02-18T11:27:16Z-
dc.date.issued2020-
dc.identifier.citationMicrosystem Technologies.en_US
dc.identifier.issn0946-7076-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/20326-
dc.description.sponsorshipTaiwan carbon nanometer technology corporation, Taiwanen_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.subjectventilator-associated pneumoniaen_US
dc.subjectelectronic noseen_US
dc.subjectintensive care uniten_US
dc.subjectsupport vector machineen_US
dc.subjectartificial neural networken_US
dc.titleDevelopment of an E-nose System using Machine Learning Methods to Predict Ventilator-Associated Pneumoniaen_US
dc.typeArticleen_US
dc.relation.isPartOfMicrosystem Technologies.-
pubs.publication-statusAccepted-
Appears in Collections:Dept of Electronic and Electrical Engineering Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf1.12 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.