Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/20506Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chakrabarty, D | - |
| dc.contributor.author | Biswas, M | - |
| dc.contributor.author | Bhattacharya, S | - |
| dc.date.accessioned | 2020-03-12T15:06:38Z | - |
| dc.date.available | 2015-01-01 | - |
| dc.date.available | 2020-03-12T15:06:38Z | - |
| dc.date.issued | 2015 | - |
| dc.identifier.citation | Electronic Journal of Statistics, 2015, 9 pp. 1378 - 1403 | en_US |
| dc.identifier.citation | arXiv:1304.5967v4 [stat.AP] | - |
| dc.identifier.issn | 1935-7524 | - |
| dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/20506 | - |
| dc.identifier.uri | https://arxiv.org/abs/1304.5967 | - |
| dc.format.extent | 1378 - 1403 | - |
| dc.language.iso | en | en_US |
| dc.publisher | The Institute of Mathematical Statistics and the Bernoulli Society | en_US |
| dc.subject | supervised learning | en_US |
| dc.subject | inverse problems | en_US |
| dc.subject | Gaussian Process | en_US |
| dc.subject | matrix-variate normal | en_US |
| dc.subject | transformation-based MCMC | en_US |
| dc.title | Bayesian nonparametric estimation of Milky Way parameters using matrix-variate data, in a new Gaussian Process based method | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | https://doi.org/10.1214/15-EJS1037 | - |
| dc.relation.isPartOf | Electronic Journal of Statistics | - |
| pubs.publication-status | Published | - |
| pubs.volume | 9 | - |
| Appears in Collections: | Dept of Mathematics Research Papers | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FullText.pdf | 400.44 kB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.