Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/20854
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHasheminejad, SM-
dc.contributor.authorChong, TP-
dc.contributor.authorLacagnina, G-
dc.contributor.authorJoseph, P-
dc.contributor.authorKim, J-H-
dc.contributor.authorChoi, K-S-
dc.contributor.authorOmidyeganeh, M-
dc.contributor.authorPinelli, A-
dc.contributor.authorStalnov, O-
dc.date.accessioned2020-05-19T13:57:00Z-
dc.date.available2020-05-19T13:57:00Z-
dc.date.issued2020-06-16-
dc.identifierORCID iDs: Seyed Mohammad Hasheminejad - 0000-0002-7717-0820; Tze Pei Chong - 0000-0002-5272-3943; Giovanni Lacagnina - 0000-0002-8038-1127; Phillip Joseph - 0000-0001-9299-8629; Kwing-So Choi - 0000-0002-8383-8057; Alfredo Pinelli - 0000-0001-5564-9032; Oksana Stalnov - ORCID:0000-0002-3853-1507.-
dc.identifier.citationHasheminejad, SM., Chong, T.P., Lacagnina, G., Joseph, P., Kim, J.-H., Choi, K.-S., Omidyeganeh, M., Pinelli, A. and Stalnov, O.(2020) 'On the Manipulation of Flow and Acoustic Fields of a Blunt Trailing Edge Aerofoil by Serrated Leading Edges', Journal of the Acoustical Society of America, 147 (6), pp. 3932 - 3947. doi: 10.1121/10.0001377.en_US
dc.identifier.issn0001-4966-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/20854-
dc.description.abstractCopyright © The Author(s) 2020. This paper employs serrated leading edges to inject streamwise vorticity to the downstream boundary layer and wake to manipulate the flow field and noise sources near the blunt trailing edge of an asymmetric aerofoil. The use of a large serration amplitude is found to be effective to suppress the first noise source—bluntness-induced vortex shedding tonal noise—through the destruction of the coherent eigenmodes in the wake. The second noise source is the instability noise, which is produced by the interaction between the boundary layer instability and separation bubble near the blunt edge. The main criterion needed to suppress this noise source is related to a small serration wavelength because, through the generation of more streamwise vortices, it would facilitate a greater level of destructive interaction with the separation bubble. If the leading edge has both a large serration amplitude and wavelength, the interaction between the counter-rotating vortices themselves would trigger a turbulent shear layer through an inviscid mechanism. The turbulent shear layer will produce strong hydrodynamic pressure fluctuations to the trailing edge, which then scatter into broadband noise and transform into a trailing edge noise mechanism. This would become the third noise source that can be identified in several serrated leading edge configurations. Overall, a leading edge with a large serration amplitude and small serration wavelength appears to be the optimum choice to suppress the first and second noise sources and, at the same time, avoid the generation of the third noise source.-
dc.description.sponsorshipUK Engineering and Physical Sciences Research Council research grant (Grant No. EP/N018737/1) “Quiet aerofoils of the nextgeneration.”en_US
dc.format.extent3932 - 3947-
dc.format.mediumPrint-Electronic-
dc.language.isoenen_US
dc.publisherAcoustical Societey of Americaen_US
dc.rightsCopyright © The Author(s) 2020. Published by the Acoustical Society of America. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectserrated leading edgeen_US
dc.subjectblunt trailing edgeen_US
dc.subjecttonal noiseen_US
dc.subjectstreamwise vorticesen_US
dc.titleOn the Manipulation of Flow and Acoustic Fields of a Blunt Trailing Edge Aerofoil by Serrated Leading Edgesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1121/10.0001377-
dc.relation.isPartOfJournal of the Acoustical Society of America-
pubs.issue6-
pubs.publication-statusPublished-
pubs.volume147-
dc.identifier.eissn1520-8524-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf7.95 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons