Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/22865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Q-
dc.contributor.authorYu, Y-
dc.contributor.authorAhmed, HOA-
dc.contributor.authorDarwish, M-
dc.contributor.authorNandi, AK-
dc.date.accessioned2021-06-19T04:35:13Z-
dc.date.available2021-06-19T04:35:13Z-
dc.date.issued2021-06-17-
dc.identifierORCiD: Hosameldin O. A. Ahmed https://orcid.org/0000-0002-8523-1099-
dc.identifierORCiD: Asoke K. Nandi https://orcid.org/0000-0001-6248-2875-
dc.identifierArticle number: 4159-
dc.identifier.citationWang, Q., Yu, Y., Ahmed, H. O. A., Darwish, M. and Nandi, A. K. (2021) ‘Open-Circuit Fault Detection and Classification of Modular Multilevel Converters in High Voltage Direct Current Systems (MMC-HVDC) with Long Short-Term Memory (LSTM) Method’, Sensors, 21(12), 4159, pp. 1-15. doi: 10.3390/s21124159.-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/22865-
dc.descriptionData Availability Statement: The data presented in this study may be available on request from the first author, Q Wang. The data are not publicly available due to privacy reason.-
dc.description.abstractFault detection and classification are two of the challenging tasks in Modular Multilevel Converters in High Voltage Direct Current (MMC-HVDC) systems. To classify directly the raw sensor data without certain feature extraction and classifier design, a long short-term memory (LSTM) neural network is proposed and used for seven states of the MMC-HVDC transmission power system simulated by Power Systems Computer Aided Design/ Electromagnetic Transients including DC (PSCAD/EMTDC). It is observed that the LSTM method can detect faults with 100% accuracy and classify different faults as well as provide promising fault classification performance. Compared with a bidirectional LSTM (BiLSTM), the LSTM can get similar classification accuracy, requiring less training time and testing time. Compared with Convolutional Neural Networks (CNN) and AutoEncoder-based deep neural networks (AE-based DNN), the LSTM method can get better classification accuracy around the middle of the testing data proportion but it needs more training time.en_US
dc.description.sponsorshipNational Natural Science Foundation of China; Shaanxi Provincial Science and Technology Agency; Key Laboratory Project of Department of Education of Shaanxi Province. This work is supported by Brunel University London (UK) and the National Fund for Study Abroad (China).en_US
dc.format.extent1 - 15-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMMC-HVDCen_US
dc.subjectfault detectionen_US
dc.subjectfault classificationen_US
dc.subjectLSTMen_US
dc.subjectBiLSTMen_US
dc.subjectCNNen_US
dc.subjectclassification accuracyen_US
dc.titleOpen-circuit Fault Detection and Classification of Modular Multilevel Converters in High Voltage Direct Current Systems (MMC-HVDC) with Long Short-Term Memory (LSTM) methoden_US
dc.typeArticleen_US
dc.date.dateAccepted2021-06-15-
dc.identifier.doihttps://doi.org/10.3390/s21124159-
dc.relation.isPartOfSensors-
pubs.issue12-
pubs.publication-statusPublished-
pubs.volume21-
dc.identifier.eissn1424-8220-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2021-06-15-
dc.rights.holderThe authors-
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf4.85 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons