Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/24526
Title: | Berry-esseen bounds in the breuer-major CLT and gebelein’s inequality |
Authors: | Nourdin, I Peccati, G Yang, X |
Keywords: | Breuer-Major theorem;Rate of convergence;Gebelein’s inequality;Malliavin-Stein approach |
Issue Date: | 22-Jun-2019 |
Publisher: | Bernoulli Society for Mathematical Statistics and Probability |
Citation: | Ivan Nourdin. Giovanni Peccati. Xiaochuan Yang. "Berry-Esseen bounds in the Breuer-Major CLT and Gebelein’s inequality." Electron. Commun. Probab. 24 1 - 12, 2019. https://doi.org/10.1214/19-ECP241 |
Abstract: | We derive explicit Berry-Esseen bounds in the total variation distance for the Breuer-Major central limit theorem, in the case of a subordinating function ϕ satisfying minimal regularity assumptions. Our approach is based on the combination of the Malliavin-Stein approach for normal approximations with Gebelein’s inequality, bounding the covariance of functionals of Gaussian fields in terms of maximal correlation coefficients. |
URI: | http://bura.brunel.ac.uk/handle/2438/24526 |
DOI: | http://dx.doi.org/10.1214/19-ECP241 |
ISSN: | 1083-589X |
Appears in Collections: | Dept of Mathematics Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | 247.28 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License