Please use this identifier to cite or link to this item:
Title: AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider
Authors: Fanelli, C
Papandreou, Z
Suresh, K
Adkins, JK
Akiba, Y
Albataineh, A
Amaryan, M
Arsene, IC
Gayoso, CA
Bae, J
Bai, X
Røed, K
Steinberg, P
Glazier, D
Paganis, S
Perepelitsa, DV
Schwarz, C
Pate, SF
Patel, M
Paus, C
Zhang, Y
Lawrence, D
He, X
Penman, G
Boeglin, W
Perdekamp, MG
Reed, R
Stepanov, P
Reinhold, J
Weinstein, L
Glimos, E
Renner, EL
Camacho, CM
Livingston, K
Kim, B
Watts, DP
David, G
Brash, E
Richards, J
Riedl, C
Rinn, T
Roche, J
Schwiening, J
Velkovska, J
Stevens, J
Ryu, J
Roland, GM
Ron, G
Goto, Y
Rosati, M
Dean, CT
Royon, C
Bueltmann, S
Kim, M
Iwata, T
Seidl, R
Pybus, JR
Raue, B
Mkrtchyan, A
Sickles, A
Briscoe, WJ
Grau, N
Simmerling, P
Sirca, S
Sharma, D
Kim, A
Shi, Z
Shibata, T-A
Sun, P
Zhao, Y-X
Bellwied, R
Williams, M
Smith, K
Shih, C-W
Shimizu, S
Kim, Y
Long, E
Shrestha, U
Greene, SV
Slifer, K
Wood, L
Zheng, X
Sun, X
Lin, C-H
Tadevosyan, V
Mkrtchyan, A
Pinkenburg, C
Jo, HS
Purschke, ML
Tang, W-C
Araya, ST
Kistenev, E
Tarafdar, S
Zhuang, P
Teodorescu, L
Thomas, D
Lin, DX
Timmins, A
Joo, K
Tomasek, L
Wood, MH
Diehl, S
Monaghan, P
Bukhari, MHS
van Hecke, HW
Cheon, Y
Trotta, N
Trotta, R
Tveter, TS
Kalantarians, N
Nagle, J
Umaka, E
Klimenko, V
Usman, A
Capobianco, R
Doshita, N
Woody, C
Haggerty, J
Montgomery, R
Wyslouch, B
Sarsour, M
da Costa, HP
Guo, L
Liu, K
Korover, I
Xiao, Z
Yamazaki, Y
Yang, Y
Ye, Z
Chen, K
Dupré, R
Chang, W-C
Yoo, HD
Yurov, M
Morrison, D
Zachariou, N
Liu, MX
Zajc, WA
Kuhn, S
Phelps, W
Chen, K-F
Wickramaarachchi, N
Wong, C-P
Strakovsky, II
Cheng, K-Y
Korsch, W
Movsisyan, A
Chiu, M
Chujo, T
Citron, Z
Cline, E
Cohen, E
Dzhygadlo, R
Kalicy, G
Kim, C
Hayward, T
Crawford, C
Cormier, T
Morales, YC
Piasetzky, E
Cotton, C
Mkrtchyan, H
Crafts, J
Hen, O
Kawade, K
Ehlers, R
Salur, S
El Fassi, L
Brooks, M
Bylinkin, A
Wang, Y
Emmert, A
Ent, R
Prochazka, I
Fatemi, R
Kay, SJD
Fegan, S
Finger, M
Brindza, P
Finger, M
Frantz, J
Higinbotham, DW
Liyanage, N
Sokhan, D
Kuo, C-M
Geurts, F
Lebedev, S
Friedman, M
Friscic, I
Gangadharan, D
Strube, J
Gardner, S
Protzman, T
Gates, K
Lajoie, J
Llope, WJ
Hoballah, M
Murray, M
Soltz, R
Horn, T
Van Hulse, C
Bernauer, JC
Santiesteban, N
Borysova, M
Hoghmrtsyan, A
Hsu, P-HJ
Huang, J
Huber, G
Lee, H
Loizides, C
Hutson, A
Hwang, KY
Sondheim, W
Hyde, CE
Santos, R
Inaba, M
Rajput-Ghoshal, R
Voutier, E
Lee, JSH
Ha, SK
Demarteau, M
Bashkanov, M
Putschke, J
Song, J
Lee, SW
Lee, Y-J
Li, W
Li, WB
Li, X
Lu, R-S
Peters, K
Nagai, K
Lim, S
Li, X
Li, X
Wang, PK
Li, X
Song, J
Liang, YT
Nakagawa, I
Benmokhtar, F
Zha, W
Lu, Z
Krintiras, G
Kutz, T
Guo, AQ
Lynch, W
Mantry, S
Wang, Q
Marchand, D
Marcisovsky, M
Markert, C
Baker, MD
Markowitz, P
Marukyan, H
Nattrass, C
Schambach, J
Creekmore, S
Rasson, J
Miyachi, Y
McGaughey, P
Mihovilovic, M
Berdnikov, V
Durham, JM
Milner, RG
Wang, Y
Milov, A
Read, KF
Schmidt, A
Nguyen, D
Cuevas, C
Niccolai, S
Gilman, R
Kim, Y
Zhang, J-L
Ko, SH
Nouicer, R
Nukazuka, G
Bock, F
Nycz, M
Schmidt, N
Okorokov, VA
Orešić, S
Cunningham, J
Osborn, JD
Zhang, J-X
O’Shaughnessy, C
Keywords: ECCE;electron ion collider;tracking;artificial intelligence;evolutionary algorithms;Bayesian optimization
Issue Date: 17-Nov-2022
Publisher: Elsevier BV
Citation: Fanelli, C. et al. (2022) 'AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider', Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1047, 167748, pp. 1 - 19. doi: 10.1016/j.nima.2022.167748.
Abstract: The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector.
Description: arXiv preprint [v2] Fri, 20 May 2022 03:23:44 UTC (2,296 KB) made available under a Creative Commons (CC BY) Attribution Licence, now in press, published by Elsevier: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, available online 17 November 2022 at:
ISSN: 0168-9002
Other Identifiers: ORCID iD: Liliana Teodorescu
arXiv:2205.09185v2 [physics.ins-det]
Appears in Collections:Dept of Electronic and Electrical Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Preprintv2.pdf2.85 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons