Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/2591
Title: | A 10-point interpolatory recursive subdivision algorithm for the generation of parametric surfaces |
Authors: | Qu, R Gregory, JA |
Issue Date: | 1991 |
Publisher: | Brunel University |
Citation: | Maths Technical Papers (Brunel University). January 1991, pp 1-11 |
Series/Report no.: | ;TR/01/91 |
Abstract: | In this paper, an interpolatory subdivision algorithm for surfaces over arbitrary triangulations is introduced and its properties over uniform triangulations studied. The Butterfly Scheme, which is introduced by Dyn, Gregory and Levin is a special case of this algorithm. In our analysis, the matrix approach is employed and the idea of "Cross Difference of Directional Divided Difference" analysis is presented. This method is a generalization of the technique used by Dyn, Gregory and Levin etc. to analyse univariate subdivision algorithms. It is proved that the algorithm produces smooth surfaces provided the shape parameters are kept within an appropriate range. |
URI: | http://bura.brunel.ac.uk/handle/2438/2591 |
Appears in Collections: | Dept of Mathematics Research Papers Mathematical Sciences |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TR_01_91.pdf | 274.17 kB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.